OJSTA  Vol.2 No.1 , January 2013
New Method of Generation of Carbon Molecules and Clusters

Firstly the method of joint synthesis of carbon molecules and their hydrides is developed. The stage of high-temperature sublimation of carbon in a new method of generation of carbon molecules is completely excluded. By mass spectrometric method the condensation products of new method of pyrolysis (NMP) benzene are studied. Firstly clusters (C3-C17), typical for carbon vapour, in substances obtained under pyrolysis of hydrocarbons were detected. Fullerene C60 and its hydrides, quasi-fullerenes C48 and C33 inproducts of benzene pyrolysis are detected also. Firstly it is shown what clusters C3-C5 can be generated at so low (100?C-200?C) temperatures of decomposition of substance. Obtained experimental results firstly demonstrate that the small carbon molecules can be generated in reactionary conditions excluding evaporation of carbon. Dehydrogenation and destruction of hydrocarbon molecules is the first stage on a route of the transformation of benzene to carbon molecules.

Cite this paper
A. Kharlamov, G. Kharlamova, M. Bondarenko and V. Fomenko, "New Method of Generation of Carbon Molecules and Clusters," Open Journal of Synthesis Theory and Applications, Vol. 2 No. 1, 2013, pp. 38-45. doi: 10.4236/ojsta.2013.21004.
[1]   H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley, “C60: Buckminsterfullerene,” Nature, Vol. 318, No. 6042, 1985, pp. 162-163. doi:10.1038/318162a0

[2]   E. A. Rohlfing, D. M. Cox and A. Kaldor, “Production and Characterization of Supersonic Carbon Cluster Beams,” Chemical Physics, Vol. 81, No. 7, 1984, pp. 3322-3330. doi:10.1063/1.447994

[3]   W. Kratschmer, L. D. Lamb, K. Fostiropoulos and D. R. Huffman, “Solid C60: A New Form of Carbon,” Nature, Vol. 347, No. 6291, 1990, pp. 354-358. doi:10.1038/347354a0

[4]   R. Taylor, J. P. Hare, A. K. Abdul-Sada and H. W. Kroto, “Isolation, Separation and Characterisation of the Fullerenes C60 and C70: The Third Form of Carbon,” Journal of the Chemical Society, Chemical Communications, Vol. 20, No. 20, 1990, pp. 1423-1425. doi:10.1039/c39900001423

[5]   F. Diederich, R. Ettl, Y. Rubin, R. L. Whetten, R. Beck, M. Alvarez, S. Anz, D. Sensharma, F. Wudl, K. C. Khemani and A. Koch, “The Higher Fullerenes: Isolation and Characterization of C76, C84, C90, C94, and C70O, an Oxide of D5h-C70,” Science, Vol. 252, No. 5005, 1991, pp. 548-551. doi:10.1126/science.252.5005.548

[6]   F. Diederich, R. L. Whetten, C. Thilgen, R. Ettl, I. Chao and M. M. Alvarez, “Fullerene Isomerism: Isolation of C2v, -C78 and D3-C78,” Science, Vol. 254, No. 5039, 1991, pp. 1768-1770. doi:10.1126/science.254.5039.1768

[7]   M. D. Diener and J. M. Alford, “Isolation and Properties of Small-Bandgap Fullerenes,” Nature, Vol. 393, No. 6686, 1998, pp. 668-671. doi:10.1038/31435

[8]   Ph. Gerhardt, S. L?ffler and K. H. Homann, “Polyhedral Carbon Ions in Hydrocarbon Flames,” Chemical Physics Letters, Vol. 137, No. 4, 1987, pp. 306-310. doi:10.1016/0009-2614(87)80889-8

[9]   J. B. Howard, J. T. McKinnon, Y. Makarovsky, A. L. Lafleur and M. E. Johnson, “Fullerenes C60 and C70 in Flames,” Nature, Vol. 352, No. 6331, 1991, pp. 139-141. doi:10.1038/352139a0

[10]   G. M. Jenkins, L. R. Holland, H. Maleki and J. Fisher, “Continuous Production of Fullerenes by Pyrolysis of Acetylene at a Glassy Carbon Surface,” Carbon, Vol. 36, No, 12, 1998, pp. 1725-1727. doi:10.1016/S0008-6223(97)00220-0

[11]   R. Taylor, G. J. Langley, H. W. Kroto and D. R. M. Walton, “Formation of C60 by Pyrolysis of Naphthalene,” Nature, Vol. 366, No. 6457, 1993, pp. 728-731. doi:10.1038/366728a0

[12]   C. J. Crowley, R. Taylor, H. W. Kroto, D. R. M. Walton, P. C. Cheng and L. T. Scott, “Pyrolytic Production of Fullerenes,” Synthetic Metals, Vol. 77, No. 1-3, 1996, pp. 17-22. doi:10.1016/0379-6779(96)80048-8

[13]   J. Osterodt, A. Zett and F. V?gtle, “Fullerenes by Pyrolysis of Hydrocarbons and Synthesis of Isomeric Methanofullerenes,” Tetrahedron, Vol. 52, No. 14, 1996, pp. 4949-4962. doi:10.1016/0040-4020(96)00103-2

[14]   C. Piskoti, J. Yarger and A. Zettl, “A New Carbon Solid, C36,” Nature, Vol. 393, No. 6687, 1998, pp. 771-774. doi:10.1038/31668

[15]   A. Koshio, M. Inakuma, T. Sugai and H. Shinohara, “A Preparative Scale Synthesis of C36 by High Temperature Laser Vaporization: Puri?cation and Identi?cation of C36H6 and C36H6O,” Journal of the American Chemical Society, Vol. 122, No. 2, 2000, pp. 398-399. doi:10.1021/ja9934347

[16]   Z. Wang, X. Ke, Z. Zhu, F. Zhu, M. Ruan, H. Chen, R. Huang and L. Zheng, “A New Carbon Solid Made of the World’s Smallest Caged Fullerene C20,” Physics Letters A, Vol. 280, No. 5-6, 2001, pp. 351-356. doi:10.1016/S0375-9601(00)00847-1

[17]   Z. Iqbal, Y. Zhang, H. Grebel, S. Vijayalakshmi, A. Lahamer, G. Benedek, M. Bernasconi, J. Cariboni, I. Spagnolatti, R. Sharma, F. J. Owens, M. E. Kozlov, K. V. Rao and M. Muhammed, “Evidence for a Solid Phase of Dodecahedral C20,” European Physical Journal B, Vol. 31, No. 4, 2003, 509-515. doi:10.1140/epjb/e2003-00060-4

[18]   T. Guo, M. D. Diener, Y. Chai, M. J. Alford, R. E. Haufler, S. M. McClure, T. Ohno, J. H. Weaver, G. E. Scuseria and R. E. Smalley, “Uranium Stabilization of C28: A Tetravalent Fullerene,” Science, Vol. 257, No. 5077, 1992, pp. 1661-1664. doi:10.1126/science.257.5077.1661

[19]   Z. Chen, “The Smaller Fullerene C50, Isolated as C50Cl10,” Angewandte Chemie International Edition, Vol. 43, No. 36, 2004, pp. 4690-4691. doi:10.1002/anie.200401764

[20]   F. Cataldo, “Cyanopolyynes: Carbon Chains Formation in a Carbon Arc Mimicking the Formation of Carbon Chains in the Circumstellar Medium,” International Journal of Astrobiology, Vol. 3, No. 03, 2004, pp. 237-246. doi:10.1017/S1473550404002149

[21]   F. Cataldo, “Simple Generation and Detection of Polynes in an Arc Discharge between Graphite Electrodes Submerged in Various Solvents,” Carbon, Vol. 41, No. 13, 2003, pp. 2653-2689. doi:10.1016/S0008-6223(03)00345-2

[22]   F. Cataldo, “Synthesis of Polyynes in a Submerged Electric Arc in Organic Solvents,” Carbon, Vol. 42, No. 1, 2004, pp. 129-142. doi:10.1016/j.carbon.2003.10.016

[23]   W. Jr. Weltner, P. N. Walsh and C. L. Angell, “Spectroscopy of Carbon Vapor Condensed in Rare-Gas Matrices at 4° and 20° K. I,” Journal of Chemical Physics, Vol. 40, 1964, pp. 1299-1305. doi:10.1063/1.1725312

[24]   I. Cermak, M. F?rderer, S. Kalhofer, H. Stopka-Ebeler and W. Kr?tschmer, “Laser-Induced Emission Spectroscopy of Matrix-Isolated Carbon Molecules: Experimental Setup and New Results on C3,” Journal of Chemical Physics, Vol. 108, No. 24, 1998, pp. 10129-10142. doi:10.1063/1.476472

[25]   A. I. Kharlamov, S. V. Loythenko, N. V. Кirillova, S. V. Kaverina and V. V. Fomenko, “Toroidal Nanostructures of Carbon. Single-Walled 4-, 5- and 6-Hadrons and Nanorings,” Reports of the National Academy of Sciences of Ukraine, No. 1, 2004, pp. 95-100. https://www.etde.org/etdeweb/details_open.jsp?osti_id=20465861

[26]   A. I. Kharlamov, L. N. Ushkalov, N. V. Кirillova, V. V. Fomenko and N. I. Gubareny, “Synthesis of Onion Nanostructures of Carbon at Pyrolysis of Aromatic Hydrocarbons,” Reports of the National Academy of Sciences of Ukraine, No. 3, 2006, pp. 97-103.

[27]   G. Kharlamova, A. Kharlamov, N. Kirillova and A. Skripnichenko, “Novel Transparent Molecular Crystals of Carbon,” In: A. Vaseashta and I. Mihailescu, Eds., Functionalized Nanoscale Materials, Devices and Systems, Springer, Dordrecht, 2008, pp. 373-379. doi:10.1007/978-1-4020-8903-9_34

[28]   A. I. Kharlamov and N. V. Kirillova, “Fullerenes and Hydrides of Fullerenes as Products Transformation (Polycondensation) of Molecules of Aromatic Hydrocarbons,” Reports of the National Academy of Sciences of Ukraine, No. 5, 2009, pp. 110-118. http://www.nbuv.gov.ua/portal/all/reports/2009-05/09-05-19.html

[29]   A. Kharlamov, G. Kharlamova, O. Khyzhun and N. Kirillova, “New Substances: Red Carbon Suboxide, Red N-Doped Fullerene (C50N10)O3H10 and Red Carbon,” In: S. Zaginaichenko, D. Schur, V. Skorokhod, Eds., Carbon Nanomaterials in Clean—Energy Hydrogen Systems, Springer, Dordrecht, 2011, pp. 257-268. doi:10.1007/978-94-007-0899-0_24

[30]   O. Kharlamov, G. Kharlamova, N. Kirillova, O. Khyzhun and V. Trachevskii, “Synthesis of New Carbon Compounds: N-Doped Fullerene (C50N10)O3H10 and ‘Pyridine’ Nanocarbon,” In: A. Vaseashta, E. Braman and P. Susmann, Eds., Technological Innovations in Sensing and Detection of Chemical, Biological, Radiological, Nuclear Threats and Ecological Terrorism, Springer, Dordrecht, 2012, pp. 245-253. doi:10.1007/978-94-007-2488-4_27

[31]   А. I. Kharlamov, M. E. Bondarenko and N. V. Kirillova, “New Method for Synthesis of Fullerenes and Fullerene Hydrides from Benzene,” Russian Journal of Applied Chemistry, Vol. 85, No. 2, 2012, pp. 233-239. doi:10.1134/S1070427212020127

[32]   R. F. C. Brown, “Pyrolytic Methods in Organic Chemistry: Application of Flow and Flash Vacuum Pyrolytic Techniques,” Academic Press, New York, 1980.

[33]   M. J. Plater, M. Praveen and D. M. Schmidt, “Buckybowlsynthesis: A Novel Application of Flash Vacuum Pyrolysis,” Fullerene Science and Technology, Vol. 5, No. 4, 1997, pp. 781-800. doi:10.1080/15363839708012231

[34]   N. R. Conley and J. J. Lagowski, “On an Improved Pyrolytic Synthesis of [60]- and [70]-Fullerene,” Carbon, Vol. 40, No. 6, 2002, pp. 949-953. doi:10.1016/S0008-6223(01)00227-5

[35]   M. A. Khodorkovsky, T. O. Artamonova, S. V. Murashov A. L. Shahmin, A. A. Belyaevа, L. P. Rakcheeva, I. M. Fonseca and S. B. Lubchik, “The Study of the Higher Fullerenes by Ablation of Carbonaceous Materials,” Technical Physics, Vol. 75, No. 10, 2005, pp. 51-54. http://www.ioffe.rssi.ru/journals/jtf/2005/10/p51-54.pdf

[36]   Q. Kong, L. Zhao, J. Zhuang, J. Xu, S. Qian, Y. Li, R. Cai, H. Hou and J. Wang, “Formation of Odd-Numbered Fullerene-Related Species and Its Relation to the Formation of Metallofullerenes,” International Journal of Mass Spectrometry, Vol. 209, No. 1, 2001, pp. 69-79. doi:10.1016/S1387-3806(01)00477-8

[37]   T. V. Kulik, V. N. Barvinchenko, B. B. Palyanitsa, O. V. Smirnova, V. K. Pogorelyi and A. A. Chuiko, “A Desorption Mass Spectrometry Study of the Interaction of Cinnamic Acid with a Silica Surface,” Russian Journal of Physical Chemistry A, Vol. 81, No. 1, 2007, pp. 83-90. doi:10.1134/S0036024407010165