IJG  Vol.4 No.1 , January 2013
Textures and Rare Earth Elements Composition of Banded Iron Formations (BIF) at Njweng Prospect, Mbalam Iron Ore District, Southern Cameroon
ABSTRACT

The REE signature of banded iron formations (BIF) and martite-goethite mineralization of the Njweng ridge (South Cameroon) are used here to decipher the nature of the ocean during the period of BIF precipitation. The textures of typical BIF categories are also presented as the only sedimentary feature. Two types of BIF facies are present at Njweng: the oxide and silicate facies. These facies show two stages of phase transformations. The first is the transformation of the original magnetite mineral into martite by oxidation resulting in trellis texture; the second is a simultaneous transformation by hydration into goethite and dehydration into martite. The samples typically show LREE depleted patterns relative to HREE, a characteristic similar to that of modern seawater. Also the strong positive Eu anomalies from the samples indicate the involvement of hydrothermal plumes of volcanic origin such as at mid ocean ridges (MOR). Yttrium (Y) has a strong positive anomaly pointing to the transportation of REEs as aqueous complexes within these ancient seas. The BIF samples have no positive Ce anomalies, suggesting that the oceans at that time were more reducing with no Ce fractionation than in present day oceans. The martite-goethite mineralization rather shows a positive Ce anomaly that derived from the enrichment in REE during the weathering of REE-bearing minerals. These results are integrated into existing literature on REE in BIFs worldwide and provide new insights into these heretofore unstudied BIFs of the northern edge of the Congo Craton.


Cite this paper
D. Ilouga, C. Suh and G. Tanwi, "Textures and Rare Earth Elements Composition of Banded Iron Formations (BIF) at Njweng Prospect, Mbalam Iron Ore District, Southern Cameroon," International Journal of Geosciences, Vol. 4 No. 1, 2013, pp. 146-165. doi: 10.4236/ijg.2013.41014.
References
[1]   M. Bau, “Scavenging of Dissolved Yttrium and Rare Earths by Precipitating Iron Oxyhydroxide: Experimental Evidence for Ce, Y-Ho Fractionation, and Lanthanide Tetrda Effect,” Geochemica et Cosmochimica Acta, Vol. 63, No. 1, 1999, pp. 67-77. doi:10.1016/S0016-7037(99)00014-9

[2]   A. Knappe, P. Moller, P. Dulski and A. Pekdeger, “Positive Gadolium Anomaly in Surface Water and Ground Water of the Urban Area Berlin, Germany,” Chemie der Erde, Vol. 65, No. 2, 2005, pp. 167-189. doi:10.1016/j.chemer.2004.08.004

[3]   T. Akagi, F. F. Fu and S. Yabuki, “Absence of Ce Anomaly in the REE Patterns of Peat Moss and Peat Grass in the Ozegahara Peatland,” Geochemical Journal, Vol. 36, No. 2, 2002, pp. 113-118. doi:10.2343/geochemj.36.113

[4]   E. D. Goldberg, M. Koide and R. H. Schmitt, “Rare Earth Distributions in Marine Environment,” Journal of Geophysical Research, Vol. 68, 1963, pp. 4209-4217. doi:10.1029/JZ068i014p04209

[5]   D. Z. Piper, “Rare Earth Elements in the Sedimentary Cycle: A Summary,” Chemical Geology, Vol. 14, No. 4, 1974, pp. 285-343. doi:10.1016/0009-2541(74)90066-7

[6]   M. Bau and P. M?ller, “Rare Earth Element Systematics of the Chemically Precipitated Component in Early Precambrian Iron-Formations and the Evolution of the Terrestrial Atmosphere-Hydrosphere-Lithosphere System,” Geochimica et Cosmochimica Acta, Vol. 57, No. 10, 1993, pp. 2239-2249. doi:10.1016/0016-7037(93)90566-F

[7]   R. Bolhar, A. Hofmann, J. Woodhead, J. Hergt and P. Dirks. “Pb and Nd Isotope Systematics of Stromatolitic Limestones from the 2.7 Ga Ngezi Group of the Belingwe Greenstone Belt: Constraints on Timing of Deposition and Provenance,” Precambrian Research, Vol. 114, No. 3-4, 2002, pp. 277-294. doi:10.1016/S0301-9268(01)00229-7

[8]   R. Bolhar, B. S. Kamber, S. Moorbath, C. M. Fedo and M. J. Whitehouse, “Characterisation of Early Archaean Chemical Sediments by Trace Element Signatures,” Earth and Planetary Science Letters, Vol. 222, No. 1, 2004, pp. 43-60. doi:10.1016/j.epsl.2004.02.016

[9]   G. A. Shields and G. R. Webb, “Has the REE Composition of Seawater Changed over Geological Time?” Chemical Geology, Vol. 204, No. 1-2, 2004, pp. 103-107. doi:10.1016/j.chemgeo.2003.09.010

[10]   M. J. Van Kranendonk, G. E. Webb and B. S. Kamber, “New Geological and Trace Element Evidence from 3.45 Ga Stromatolitic Carbonates in the Pilbara Craton: Support of a Marine, Biogenic Origin and for a Reducing Archaean Ocean,” Geobiology, Vol. 1, No. 2, 2003, pp. 91 108. doi:10.1046/j.1472-4669.2003.00014.x

[11]   G. E. Webb and B. S. Kamber, “Rare Earth Elements in Holocene Reefal Microbialites: A New Shallow Seawater Proxy,” Geochimica et Cosmochimica Acta, Vol. 64, No. 9, 2000, pp.1557-1565.

[12]   C. Klein and N. J. Beukes, “Geochemistry and Sedimentology of a Facies Transition from Limestone to Iron-Formation Deposition in the Early Proterozoic Transvaal Supergroup, South Africa.” Economic Geology, Vol. 84, No. 7, 1989, pp. 1733-1774. doi:10.2113/gsecongeo.84.7.1733

[13]   L. A. Derry, and S. B. Jacobsen, “The Chemical Evolution of Precambrian Seawater—Evidence from REEs in Banded Iron Formations,” Geochimica et Cosmochimica Acta, Vol. 54, No. 11, 1990, pp. 2965-2977. doi:10.1016/0016-7037(90)90114-Z

[14]   M. Bau and, P. Dulski, “Distribution of Yttrium and Rare-Earth Elements in the Penge and Kuruman Iron Formations, Transvaal Supergroup, South Africa,” Precambrian Research, Vol. 79, No. 1, 1996, pp. 37-55. doi:10.1016/0301-9268(95)00087-9

[15]   R. Frei, P. S. Dahl, E. F. Duke, K. M. Frei, T. R. Hansen, M. M. Frandsson and L. S. Jensen, “Trace Element and Isotopic Characterization of Neoarchean and Paleopro terozoic Iron Formations in the Black Hills (South Dakota, USA): Assessment of Chemical Change During 2.9 1.9 Ga Deposition Bracketing the 2.4 2.2 Ga First Rise of Atmospheric Oxygen.” Precambrian Research, Vol. 162, No. 3-4, 2008, pp. 441-474. doi:10.1016/j.precamres.2007.10.005

[16]   A. Bekker, J. F. Slack, N. Planavsky, B. Krape?, A. Hof mann, K. O. Konhauser and O. J. Rouxel, “Iron Formation: The Sedimentary Product of a Complex Interplay Among Mantle, Tectonic, Oceanic and Biospheric Processes,” Economic Geology, Vol. 105, No. 3, 2010, pp. 467-508. doi:10.2113/gsecongeo.105.3.467

[17]   Y. Kato, I. Ohta, T. Tsunematsu, Y. Watanabe, Y. Isozaki, S. Maruyama and N. Imai, “Rare Earth Elements Variations in Mid-Achean Banded Iron Formations: Implications for the Chemistry of Ocean and Plate Tectonics,” Geochimica et Cosmochimica Acta, Vol. 62, No. 21-22, 1998, pp. 3475-3496. doi:10.1016/S0016-7037(98)00253-1

[18]   J. Dymond, J. B. Corliss, G. R. Heath, C. W. Field, E. J. Dasch and H. H. Vieh, “Origin of Metalliferous Sediments from the Pacific Ocean,” Geological Society of America Bulletin, Vol. 84, No. 10, 1973, pp. 3355-3372. doi:10.1130/0016-7606(1973)84<3355:OOMSFT>2.0.CO;2

[19]   R. M. Sherrell, M. P. Field and G. Ravizza, “Uptake and Fractionation of Rare Earth Elements on Hydrothermal Plume Particles at 9?45'N, East Pacific Rise,” Geochimica et Cosmochimica Acta, Vol. 63, No. 11-12, 1999, pp. 1709-1722. doi:10.1016/S0016-7037(99)00182-9

[20]   G. B. Morey, “High-Grade Iron Ore Deposits of the Mesabi Range, Minnesota: Products of a Continental-Scale Proterozoic Ground-Water Flow System,” Economic Geology, Vol. 94, No. 1, 1999, pp. 133-142. doi:10.2113/gsecongeo.94.1.133

[21]   D. Taylor, H. J. Dalstra, A. E. Harding, G. C. Broadbent, and M. E. Barley, “Genesis of High-Grade Hematite Ore Bodies of the Hamersley Province, Western Australia,” Economic Geology, Vol. 96, No. 4, 2001, pp. 837-873.

[22]   J. Zhang and Y. Nozaki, “Rare Earth Elements and Yttrium in Seawater: ICP-MS Determinations in the East Caroline, Coral Sea, and South Fiji Basins of the Western South Pacific Ocean,” Geochemica et Cosmochimica Acta, Vol. 60, No. 23, 1996, pp. 4631-4644. doi:10.1016/S0016-7037(96)00276-1

[23]   B. Jacobsens and M. R. Pimentel-Klose, “A Nd Isotopic Study of the Hamersley and Michipicoten Banded Iron Formations: The Source of REE and Fe in Archean oceans,” Earth and Planetary Science Letters, Vol. 87, No. 1-2, 1988, pp. 29-44. doi:10.1016/0012-821X(88)90062-3

[24]   B. Jacobsens and M. R. Pimentel-Klose, “Nd Isotopic Variations in Precambrian Banded Iron Formations,” Geo physical Research Letters, Vol. 15, No. 4, 1988, pp. 393-396. doi:10.1029/GL015i004p00393

[25]   S. F. Toteu, J. Penaye and Y. P. Djomani, “Geodymanic Evolution of the Pan-African Belt in Central Africa with Special Reference to Cameroon,” Canadian Journal of Earth Sciences, Vol. 41, No. 1, 2004, pp. 73-85. doi:10.1139/e03-079

[26]   H. Mvondo, S. Owona, J. Mvondo Ondoa and J. Essono, “Tectonic Evolution of the Yaounde Segment of the Neo proterozoic Central African Orogenic Belt in Southern Cameroon,” Canadian Journal of Earth Sciences, Vol. 44, No. 4, 2007, pp. 433-444. doi:10.1139/e06-107

[27]   C. E. Suh, A. R. Cabral and E. Ndime, “Geology and Ore Fabrics of the Nkout High-Grade Haematite Deposit, Southern Cameroon,” In: T. Angerer, S. Hagemann, C. A. Rosière, Eds., The Origin of Enriched Iron and Manga nese Ore Deposits, Smart Science for Exploration and Mining, Townsville, 2009, pp. 558-560.

[28]   C. K. Shang, W. Siebel, M. Satir, F. Chen and J. O. Mvondo, “Zircon Pb-Pb and U-Pb Systematics of TTG Rocks in the Congo Craton: Constraints of Crustal For mation, Crystallization and Pan-African Lead Loss,” Bulletin Geosciences, Vol. 79, No. 4, 2004, pp. 205-219.

[29]   R. Tchameni, K. Mezger, N. E. Nsifa and A. Pouclet, “Crustal Origin of Early Proterozoic Syenites in the Congo Craton (Ntem complex), South Cameroon,” Lithos, Vol. 57, No. 1, 2001, pp. 23-42. doi:10.1016/S0024-4937(00)00072-4

[30]   S. F. Toteu, W. R. Van Schmus, J. Penaye and J. B. Nyobe “U/Pb and Sm/Nd Evidence for Eburnean and Pan-African High-Grade Metamorphism in Cratonic Rocks of Southern Cameroon,” Precambrian Research, Vol. 67, No. 3-4, 1994, pp. 321-347. doi:10.1016/0301-9268(94)90014-0

[31]   M. Caen Vachette, Y. Vialette, J.-P. Bassot and P. Vidal, “Apport de la Géochronologie à la Connaissance de la Géologie Gabonaise,” Chronique de la Recherche Mi nière, Vol. 491, 1988, pp. 35-54.

[32]   Sundance Resources Limited. http://intranet/SitePages/Default.aspx

[33]   S. R. Taylor and S. M. McLennan, “The Continental Crust: Its Composition and Evolution,” Blackwell, Ox ford, 1985, p. 312.

[34]   E. A. Gaucher, et al., “Palaeotemperature Trend for Pre Cambrian Life Inferred from Resurrected Proteins,” Nature, Vol. 451, No. 7179, 2008, pp. 704-707. doi:10.1038/nature06510

[35]   F. Robert and M. Chaussidon, “A Paleotemperature Curve for the Precambrian Oceans Based on Silicon Isotopes in Cherts,” Nature, Vol. 443, No. 7036, 2006, pp. 969-972. doi:10.1038/nature05239

[36]   Z. Lewy, “Banded Iron Formations (BIFs) and Associated Sediments Do Not Reflect the Physical and Chemical Properties of Early Precambrian Seas,” International Journal of Geosciences, Vol. 3, No. 1, 2012, pp. 226-236. doi:10.4236/ijg.2012.31026

[37]   A. F. Trendall and J. G. Blockley, “The Iron Formations of the Precambrian Hamersley Group, Western Austra lia,” Geological survey of Western Australia Bulletin, Vol. 119, 1970, pp. 1-366.

[38]   J. M. Allen and M. P. Simpson, “Petrography of Metamorphosed Banded Iron Formation and Associated Schists from the Mbarga Iron Deposit, Mbalam Project Area, Republic of Cameroon,” John Allen and Associates Ltd Report (Unpublished), 2008, p. 45.

[39]   N. H. S. Olivier, J. S. Cleverley, G. M. Dipple and G. C. Broadbent, “Giant BIF Hosted Haematite Ores: Geo chemical and Isotopic Modelling of Meteoric and Basinal Fluid-Rock Reactions,” Proceedings of Biennial Meeting of the Society for Geology Applied to mineral Deposits, Dublin, 2007, pp. 1219-1222.

[40]   A. D. Weeb, G. R. Dicksens and N. H. S. Oliver, “From Banded Iron-Formation to Iron Ore: Geochemical and Mineralogical Constraints from across the Hamersley Province, Western Australia,” Chemical Geology, Vol. 197, No. 1-4, 2003, pp. 215-251. doi:10.1016/S0009-2541(02)00352-2

[41]   W. S. Thorn, G. C. Hagemann and M. E. Barley, “Petro graphic and Geochemical Evidence for Hydrothermal Evolution of the North Deposits, Mt. Tom Price, Western Australia,” Mineralium Deposita, Vol. 39, No. 7, 2004, pp. 766-783. doi:10.1007/s00126-004-0444-x

[42]   R. C. Figueiredo e Silva, S. C. Hagemann, L. M. Lobato, and T. Venermann, “Iron Oxide Paragenesis Quartz Vein Chronology and Hydrothermal Fluid Evolution at the Giant North Range Carajás Iron Deposits in Brazil,” Proceedings of the 9th Biennial Meeting of the Society for Geology Applied to mineral Deposits, Dublin, 2007, pp. 1223-1226.

[43]   R. C. Morris, “Genesis of Iron Ore in Banded Iron-For mation by Supergene and Supergene Metamorphic Pro cesses—A Conceptual Model,” In: K. H. Wolff, Ed., Handbook of Strata-Bound and Stratiform ore Deposits, Elsevier, Amsterdam, 1985. pp. 73-235.

[44]   J. M. F. Clout, “Upgrading Processes in BIF-Derived Iron Ore Deposits—Implication for Ore Genesis and Downstream Processing,” Proceedings of Iron Ore 2002 Conference, Perth, 9-11 September 2002, pp. 237-241.

[45]   C. Klein and Bricker, “Some Aspects of the Sedimentary and Diagenetic Environment of Proterozoic Banded Iron Formation,” Economic Geology, Vol. 72, No. 8, 1977, pp. 1457-1470. doi:10.2113/gsecongeo.72.8.1457

[46]   C. Klein and E. A. Ladeira “Petrography and Geochemis try of the Least Altered Banded Iron-Formation of the Archean Carajás Formation, Northern Brazil,” Economic Geology, Vol. 97, No. 3, 2002, pp. 643-651.

[47]   C. A. Rosiere, “Strukturelle und Texturelle Untersu chungen in der Eisenerzlagerstaette ‘Pico de Itabira’, bei Itabirito, Minas Gerais,” Brasilien: Claustheler Geowis senschaftliche Dissertationen, Vol. 9, 1981, p. 302.

[48]   R. C. Morris, “A Textural and Mineralogical Study of the Relationship of Iron Ore to Banded Iron Formation in the Hamersley Iron Province of Western Australia,” Economic Geology, Vol. 75, No. 2, 1980, pp. 184-209. doi:10.2113/gsecongeo.75.2.184

[49]   B. L. Davis, G. J. Rapp and M. J. Walawender, “Fabric and Structural Characteristics of the Martitization Process,” American Journal of Science, Vol. 266, No. 6, 1968, pp. 482-496. doi:10.2475/ajs.266.6.482

[50]   R. C. Morris, “Genetic Modelling for Banded Iron-Formation of the Hamersley Group, Pilbara Craton, Western Australia,” Precambrian Research, Vol. 60, No. 1-4, 1993, pp. 243-286. doi:10.1016/0301-9268(93)90051-3

[51]   A. Kappler, C Pasquero, K. O. Konhauser and D.K. Newman, “Deposition of Banded Iron Formations by Anoxygenic Phototrophic Fe(II)-Oxidizing Bacteria,” Geology, Vol. 33, No. 11, 2005, pp. 865-868. doi:10.1130/G21658.1

[52]   K. O. Konhauser, et al., “Decoupling Photochemical Fe(II) Oxidation from Shallow-Water BIF Deposition,” Earth and Planetary Science Letters, Vol. 258, No. 1-2, 2007, pp. 87-100. doi:10.1016/j.epsl.2007.03.026

[53]   H. P. Eugster and I.-M. Chou, “The Depositional Environments of Precambrian Banded Iron-Formations,” Economic Geology, Vol. 68, No. 7, 1973, pp. 1144-1168. doi:10.2113/gsecongeo.68.7.1144

[54]   P. S. Braterman, A. G. Cairns-Smith and R. W. Sloper, “Photooxidation of Hydrated Fe2++ Significance for Banded Iron Formations,” Nature, Vol. 303, No. 5913, 1983, pp. 163-164. doi:10.1038/303163a0

[55]   H. Elderfield and M. J. Greaves, “The Rare Earth Elements in Seawater,” Nature, Vol. 296, No. 5854, 1982, pp. 214-219. doi:10.1038/296214a0

[56]   H. J. W. De Baar, M. P. Bacon, P. G. Brewer and K. W. Bruland, “Rare Earth Elements in the Pacific and Atlantic Oceans,” Geochimica et Cosmochimica Acta, Vol. 49, No. 9, 1985, pp. 1943-1959. doi:10.1016/0016-7037(85)90089-4

[57]   M. Bau and P. Dulski, “Distribution of Yttrium and Rare Earth Elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup, South Africa,” Precambrian Research, Vol. 79, No. 1, 1996, pp. 37-55. doi:10.1016/0301-9268(95)00087-9

[58]   B. S. Kamber and G. E. Webb, “The Geochemistry of Late Archaean Microbial Carbonate: Implications for Ocean Chemistry and Continental Erosion History,” Geo chimica et Cosmochimica Acta, Vol. 65, No. 15, 2001, pp. 2509 2525. doi:10.1016/S0016-7037(01)00613-5

[59]   E. D. Goldberg, M. Koide, R. A. Schmitt and R. H. Smith, “Rare Earth Distributions in the Marine Environment,” Journal of Geophysical Research, Vol. 68, 1963, pp. 4209-4217. doi:10.1029/JZ068i014p04209

[60]   D. R. Turner, M. Whitfield and A. G. Dickson, “The Equilibrium Speciation of Dissolved Components in Freshwater and Seawater at 25?C and 1 atm Pressure,” Geochimica et Cosmochimica Acta, Vol. 45, No. 6, 1981, pp. 855-881. doi:10.1016/0016-7037(81)90115-0

[61]   R. C. Morris, “Supergene Alteration of Banded Iron Formation,” In: A. F. Trendall and R. C. Morris, Eds., Iron-Formation: Facts and Problems, Elsevier, Amster dam, 1983, pp. 513-534.

[62]   J. L. Graf, “Rare Earth Elements, Iron Formations and Seawater,” Geochimica et Cosmochimica Acta, Vol. 42, No. 12, 1978, pp. 1845-1850. doi:10.1016/0016-7037(78)90239-9

[63]   R. F. Dymek and C. Klein, “Chemistry, Petrology and Origin of Banded Iron-Formation Lithologies from the 3800 Ma Isua Supracrustal Belt,” West Greenland: Precambrian Research, Vol. 39, No. 4, 1988, pp. 247-302. doi:10.1016/0301-9268(88)90022-8

[64]   C. Klein and N. J. Beukes, “Time Distribution, Stratigraphy, and Sedimentologic Setting, and Geochemistry of Precambrian Iron-Formation,” In: J. W. Schopf and C. Klein, Eds., The Proterozoic Biosphere: A multidisciplinary study, Cambridge University Press, New York, 1992, pp. 139-146.

[65]   F. O. Raposo, E. A. Ladeira, “Petrologia de Forma??es Ferríferas e Itabiritos do Quadrilátero Ferrífero, Minas Gerais, Brasil,” 40th Congresso Brasileiro de Geologia, Sociedade Brasileira de Geologia, Núcleo de Minas Gerais, Belo Horizonte, 1998, p. 158.

[66]   B. J. Fryer, “Rare Earth Elements in Iron-Formation,” In: A. F. Trendall and R. C. Morris, Eds., Iron-Formations: Facts and Problems, Elsevier, Amsterdam, 1983, pp. 345-358. doi:10.1016/S0166-2635(08)70048-3

[67]   A. Michard, F. Albarede, G. Michard, J. F. Minster and J. L. Charlou, “Rare-Earth Elements and Uranium in High Temperature Solutions from East Pacific Rise hydrother mal Vent Field,” Nature, Vol. 303, 1983, pp. 795-797. doi:10.1038/303795a0

[68]   A. Danielson, P. Moller and P. Dulski, “The Europium Anomalies in Banded Iron Formations and the Thermal History of the Oceanic-Crust,” Chemical Geology, Vol. 97, No. 1-2, 1992, pp. 89-100. doi:10.1016/0009-2541(92)90137-T

[69]   C. Alibert and M. T. McCulloch, “Rare Earth Element and Neodymium Isotopic Compositions of Banded Iron Formations and Associated Shales from Hamersley, Western Australia,” Geochimica et Cosmochimica Acta, Vol. 57, No. 1, 1993, pp. 187-204. doi:10.1016/0016-7037(93)90478-F

[70]   J. F. Slack, T. Grenne, A. Bekker, O. J. Rouxel and P. A. Lindberg, “Suboxic Deep Seawater in the Late Paleopro terozoic: Evidence from Hematitic Chert and Iron Formation Related to Seafloor-Hydrothermal Sulfide Deposits, Central Arizona, USA,” Earth and Planetary Science Letters, Vol. 255, No. 1-2, 2007, pp. 243-256. doi:10.1016/j.epsl.2006.12.018

[71]   G. Klinkhammer, H. Elderfield and A. Hudson, “Rare Earth Elements in Seawater Near Hydrothermal Vents,” Nature, Vol. 305, No. 5931, 1983, pp. 185-188. doi:10.1038/305185a0

[72]   J. L. Evans, “The Geology and Geochemistry of the Dyke Lake Area (parts of 23J/8, 9), Labrador,” Mineral Development Division, Newfoundland Department of Mines and Energy, 1978, p. 39.

[73]   K. Laajoki, “Rare-Earth Elements in Precambrian Iron Formations in Vaydankyla, South Puolanka Area, Fin land,” Bulletin of the Geological Society of Finland, Vol. 47, No. 1-2, 1975, pp. 93-107.

[74]   B. J. Fryer “Rare Earth Evidence in Iron Formations for Changing Precambrian Oxidation States,” Geochimica et Cosmochimica Acta, Vol. 41, No. 3, 1977, pp. 361-367. doi:10.1016/0016-7037(77)90263-0

[75]   B. J. Fryer, “Trace Element Geochemistry of the Soko man Iron Formation,” Canadian Journal of Earth Sci ences, Vol. 14, No. 7, 1977, pp. 1598-1610. doi:10.1139/e77-136

[76]   T. J. Barrett, P. W. Fralick and I. Jarvis, “Rare-Earth Element Geochemistry of Some Archean Iron Formations North of Lake Superior, Ontario,” Canadian Journal of Earth Sciences, Vol. 25, No. 4, 1988, pp. 570-580. doi:10.1139/e88-055

[77]   H. J. W. De Baar, M. P. Bacon and P. G. Brewer, “Rare Earth Distributions with Positive Ce Anomaly in the Western North Atlantic Ocean,” Nature, Vol. 301, No. 5898, 1983, pp. 324-327. doi:10.1038/301324a0

[78]   C. R. German and H. Elderfield, “Application of the Ce Anomaly as a Paleoredox Indicator: The Ground Rules,” Paleoceanography, Vol. 5, No. 5, 1990, pp. 823-833. doi:10.1029/PA005i005p00823

[79]   R. Byrne and E. Sholkovitz, “Marine Chemistry and Geo chemistry of the Lanthanides,” In: K. A. Gschneider Jr., and L. Eyring, Eds., Handbook on the Physics and Chemistry of the Rare Earths, Elsevier, Amsterdam, 1996, pp. 497-593.

[80]   J. W. Moffett, “Microbially Mediated Cerium Oxidation in Seawater,” Nature, Vol. 345, No. 6274, 1990, pp. 421 423. doi:10.1038/345421a0

[81]   D. Koeppenkastrop and E. H. DeCarlo, “Sorption of Rare Earth Elements from Seawater onto Synthetic Mineral Particles—An Experimental Approach,” Chemical Geology, Vol. 95, No. 3-4, 1992, pp. 251-263. doi:10.1016/0009-2541(92)90015-W

[82]   H. J. W. De Baar, M. P. Bacon, P. G. Brewer and W. Brulank, “Rare Earth Elements in the Pacific and Atlantic Oceans,” Geochimica Cosmochimica Acta, Vol. 49, No. 9, 1985, pp. 1943-1959. doi:10.1016/0016-7037(85)90089-4

[83]   H. J. W. De Baar, C. R. German, H. Elderfield and P. Van Gaans, “Rare Earth Element Distributions in Anoxic Waters of the Cariaco Trench,” Geochimica et Cosmochi mica Acta, Vol. 52, No. 5, 1988, pp. 1203-1219. doi:10.1016/0016-7037(88)90275-X

[84]   R. Germanc and H. Elderfield, “Rare Earth Elements in Saanich Inlet, British Columbia, a Seasonally Anoxic Basin,” Geochimica Cosmochimica Acta, Vol. 53, No. 10, 1989, pp. 2561-2571. doi:10.1016/0016-7037(89)90128-2

[85]   J. J. Braun, M. Pagel, J. P. Muller, P. Bilong, A. Michard and B. Guillet, “Cerium Anomalies in Lateritic Profiles,” Geochimica et Cosmochimica Acta, Vol. 54, 1990, pp. 781-789.

[86]   J. F. Slack, T. Grenne and A. Bekker, “Seafloor-Hydro thermal Si-Fe-Mn Exhalites in the Pecos Greenstone Belt, New Mexico, and the Redox State of Ca. 1720 Ma Deep Seawater,” Geosphere, Vol. 5, No. 3, 2009, pp. 302-314. doi:10.1130/GES00220.1

[87]   S. J. Goldstein and S. B. Jacobsen, “Nd and Sr Isotopic Systematics of River Water Suspended Material: Implica tions for Crustal Evolution,” Earth and Planetary Science Letters, Vol. 87, No. 3, 1988, pp. 249-265. doi:10.1016/0012-821X(88)90013-1

[88]   S. J. Goldstein and S. B. Jacobsen, “REE in the Great Whale River Estuary, NW Quebec,” Earth and Planetary Science Letters, Vol. 88, No. 1-2, 1988, pp. 241-252. doi:10.1016/0012-821X(88)90081-7

[89]   A. Michard, and F. Albarède, “The REE Content of Some Hydrothermal Fluids,” Chemical Geology, Vol. 55, No. 1-2, 1986, pp. 51-60. doi:10.1016/0009-2541(86)90127-0

[90]   J. L. Graf, “Rare Earth Elements as Hydrothermal Tracers during the Formation of Massive Sulfide Deposits in Vol canic Rocks,” Economic Geology, Vol. 72, No. 4, 1977, pp. 527-548. doi:10.2113/gsecongeo.72.4.527

 
 
Top