[1] Liu, Y., Dimensionality reduction and main component extraction of mass spectrometry cancer data. Know-ledge-Based Systems, 2011.
[2] Lu, J., T. Zhao, and Y. Zhang, Feature selection based-on genetic algorithm for image annotation. Knowledge-Based Systems, 2008. 21(8): p. 887-891.
[3] Chmielewski, M.R., et al., The rule induction system LERS-a version for personal computers. Foundations of Computing and Decision Sciences, 1993. 18(3-4): p. 181-212.
[4] Booth, D.E., Analysis of Incomplete Multivariate Data. Technome-trics, 2000. 42(2): p. 213-214.
[5] Hudak, A.T., et al., Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data. Remote Sensing of Environment, 2008. 112(5): p. 2232-2245.
[6] Pelckmans, K., et al., Handling missing values in support vector machine classifiers. Neural Networks, 2005. 18(5-6): p. 684-692.
[7] Myers, J.W., K.B. Laskey, and T. Levitt. Learning Bayesian networks from incomplete data with stochastic search algorithms. 1999. Morgan Kaufmann Publishers Inc.
[8] Kryszkiewicz, M., Rough set approach to in-complete information systems. Information sciences, 1998. 112(1): p. 39-49.
[9] Slowinski, R. and J. Stefa-nowski, Rough classification in incomplete information systems. Mathematical and Computer Modelling, 1989. 12(10-11): p. 1347-1357.
[10] Pawlak, Z., Rough sets. International Journal of Parallel Programming, 1982. 11(5): p. 341-356.
[11] Leung, Y. and D. Li, Maximal consistent block technique for rule acquisition in incom-plete information systems. Information sciences, 2003. 153: p. 85-106.
[12] Meng, Z. and Z. Shi, A fast ap-proach to attribute reduction in incomplete decision sys-tems with tolerance relation-based rough sets. Informa-tion sciences, 2009. 179(16): p. 2774-2793.
[13] Liang, J., Z. Shi, and D. Li, The information entropy, rough entropy and knowledge granulation in rough set theory. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 2004. 12(1): p. 37-46.
[14] Hai, L., S. Jigui, and Z. Yimin, Theorem proving based on the extension rule. Journal of Auto-mated Reasoning, 2003. 31(1): p. 11-21.
[15] Hai, L. and S. Jigui, Knowledge compilation using the extension rule. Journal of Automated Reasoning, 2004. 32(2): p. 93-102.
[16] Grzymala-Busse, J.W., Managing uncer-tainty in expert systems. Vol. 143. 1991: Sprin-ger.
[17] Kirkpatrick, S. and B. Selman, Critical beha-vior in the satisfiability of random boolean expressions. Science, 1994. 264(5163): p. 1297-1301.