Graphene  Vol.2 No.1 , January 2013
Formation of Interface Bound States on a Graphene-Superconductor Junction in the Presence of Charge Inhomogeneities
ABSTRACT
Interface bound states have been theoretically predicted to appear at isolated graphene-superconductor junctions. These states are formed at the interface due to the interplay between virtual Andreev and normal reflections and provide long range superconducting correlations on the graphene layer. We describe in detail the formation of these states from combining the Dirac equation with the Bogoliubov de Gennes equations of superconductivity. On the other hand, fluctuations of the low energy charge density in graphene have been confirmed as the dominating type of disorder. For analyzing the effect of disorder on these states we use a microscopic tight binding model. We show how the formation of these states is robust against the presence of disorder in the form of electron charge inhomogeneities in the graphene layer. We numerically compute the effect of disorder on the interface bound states and on the local density of states of graphene.

Cite this paper
P. Burset, W. Herrera and A. Yeyati, "Formation of Interface Bound States on a Graphene-Superconductor Junction in the Presence of Charge Inhomogeneities," Graphene, Vol. 2 No. 1, 2013, pp. 35-41. doi: 10.4236/graphene.2013.21005.
References
[1]   S. Das Sarma, S. Adam, E. H. Hwang and E. Rossi, “Electronic Transport in Two-Dimensional Graphene,” Reviews of Modern Physics, Vol. 83, No. 2, 2011, pp. 407-470.
doi:10.1103/RevModPhys.83.407

[2]   M. I. Katsnelson, K. S. Novoselov and A. K. Geim, “Chiral Tunnelling and the Klein Paradox in Graphene,” Nature Physics, Vol. 2, 2006, p. 620. doi:10.1038/nphys384

[3]   C. W. J. Beenakker, “Colloquium: Andreev Reflection and Klein Tunneling in Graphene,” Reviews of Modern Physics, Vol. 80, No. 4, 2008, pp. 1337-1354. doi:10.1103/RevModPhys.80.1337

[4]   H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. K. Vandersypen and A. F. Morpurgo, “Bipolar Supercur- rent in Graphene,” Nature (London), Vol. 446, 2007, p. 56. doi:10.1038/nature05555

[5]   F. Miao, S. Wijeratne, Y. Zhang, U. C. Coskun, W. Bao and C. N. Lau, “Phase-Coherent Transport in Graphene Quantum Billiards,” Science, Vol. 317, No. 5844, 2007, pp. 1530-1533. doi:10.1126/science.1144359

[6]   A. Shailos, W. Nativel, A. Kasumov, C. Collet, M. Fer- rier, S. Guèron, R. Deblock and H. Bouchiat, “Proximity Effect and Multiple Andreev Reflections in Few-Layer Graphene,” EPL (Europhysics Letters), Vol. 79, No. 5, 2007, p. 57008. doi:10.1209/0295-5075/79/57008

[7]   X. Du, I. Skachko and E. Y. Andrei, “Josephson Current and Multiple Andreev Reflections in Graphene SNS Junc- tions,” Physical Review B, Vol. 77, No. 18, 2008, Article ID: 184507. doi:10.1103/PhysRevB.77.184507

[8]   C. W. J. Beenakker, “Specular Andreev Reflection in Gra- phene,” Physical Review Letters, Vol. 97, No. 6, 2006, Article ID: 067007. doi:10.1103/PhysRevLett.97.067007

[9]   Y. Li and N. Mason, “Tunneling Spectroscopy of Gra- phene Using Planar Pb Probes,” 2012. arXiv:1210.4987 [cond-mat.meshall].

[10]   C. W. J. Beenakker, R. A. Sepkhanov, A. R. Akhmerov and J. Tworzydlo, “Quantum Goos-H?nchen Effect in Graphene,” Physical Review Letters, Vol. 102, No. 14, 2009, Article ID: 146804. doi:10.1103/PhysRevLett.102.146804

[11]   S. Bhattacharjee and K. Sengupta, “Tunneling Conduc- tance of Graphene NIS Junctions,” Physical Review Let- ters, Vol. 97, No. 21, 2006, Article ID: 217001. doi:10.1103/PhysRevLett.97.217001

[12]   A. R. Akhmerov and C. W. J. Beenakker, “Pseudodiffu- sive Conduction at the Dirac Point of a Normal-Supercon- Ductor Junction in Graphene,” Physical Review B, Vol. 75, No. 4, 2007, Article ID: 045426. doi:10.1103/PhysRevB.75.045426

[13]   G. Tkachov, “Fine Structure of the Local Pseudogap and Fano Effect for Superconducting Electrons near a Zigzag Graphene Edge,” Physical Review B, Vol. 76, No. 23, 2007, Article ID: 235409. doi:10.1103/PhysRevB.76.235409

[14]   J. Linder and A. Sudb?, “Dirac Fermions and Conduc- tance Oscillations in $s$- and $d$-Wave Superconductor- Graphene Junctions,” Physical Review Letters, Vol. 99, No. 14, 2007, Article ID: 147001. doi:10.1103/PhysRevLett.99.147001

[15]   J. Linder and A. Sudb?, “Tunneling Conductance in $s$- and $d$-Wave Superconductor-Graphene Junctions: Ex- tended Blonder-Tinkham-Klapwijk Formalism,” Physical Review B, Vol. 77, No. 14, 2008, Article ID: 064507. doi:10.1103/PhysRevB.77.064507

[16]   P. Burset, A. L. Yeyati and A. Martín-Rodero, “Micro- scopic Theory of the Proximity Effect in Superconductor- Graphene Nanostructures,” Physical Review B, Vol. 77, No. 20, 2008, Article ID: 205425. doi:10.1103/PhysRevB.77.205425

[17]   J. Cserti, I. Hagymási and A. Kormányos, “Graphene Andreev Billiards,” Physical Review B, Vol. 80, No. 7, 2009, Article ID: 073404. doi:10.1103/PhysRevB.80.073404

[18]   D. Rainis, F. Taddei, F. Dolcini, M. Polini and R. Fazio, “Andreev Reflection in Graphene Nanoribbons,” Physical Review B, Vol. 79, No. 11, 2009, Article ID: 115131. doi:10.1103/PhysRevB.79.115131

[19]   Q.-F. Sun and X. C. Xie, “Quantum Transport through a Graphene Nanoribbon-Superconductor Junction,” Journal of Physics: Condensed Matter Vol. 21, No. 34, 2009, Ar- ticle ID: 344204. doi:10.1088/0953-8984/21/34/344204

[20]   S.-G. Cheng, H. Zhang and Q.-F. Sun, “Effect of Electron-Hole Inhomogeneity on Specular Andreev Reflection and Andreev Retroreflection in a Graphene-Supercon- ductor Hybrid System,” Physical Review B, Vol. 83, No. 23, 2011, Article ID: 235403. doi:10.1103/PhysRevB.83.235403

[21]   M. Titov, A. Ossipov and C. W. J. Beenakker, “Excita- tion Gap of a Graphene Channel with Superconducting Boundaries,” Physical Review B, Vol. 75, No. 4, 2007, Article ID: 045417. doi:10.1103/PhysRevB.75.045417

[22]   D. L. Bergman and K. Le Hur, “Near-Zero Modes in Condensate Phases of the Dirac Theory on the Honey- comb Lattice,” Physical Review B, Vol. 79, No. 18, 2009, Article ID: 184520. doi:10.1103/PhysRevB.79.184520

[23]   P. Burset, W. Herrera and A. Levy Yeyati, “Proximity- Induced Interface Bound States in Superconductor-Gra- phene Junctions,” Physical Review B, Vol. 80, No. 4, 2009, Article ID: 041402. doi:10.1103/PhysRevB.80.041402

[24]   G. E. Blonder, M. Tinkham and T. M. Klapwijk, “Transi- tion from Metallic to Tunneling Regimes in Supercon- ducting Microconstrictions: Excess Current, Charge Im- balance, and Supercurrent Conversion,” Physical Review B, Vol. 25, No. 7, 1982, pp. 4515-4532. doi:10.1103/PhysRevB.25.4515

[25]   H. Schomerus, “Effective Contact Model for Transport through Weakly-Doped Graphene,” Physical Review B, Vol. 76, No. 4, 2007, Article ID: 045433. doi:10.1103/PhysRevB.76.045433

[26]   Y. M. Blanter and I. Martin, “Transport through Normal- Metal Graphene Contacts,” Physical Review B, Vol. 76, No. 15, 2007, Article ID: 155433. doi:10.1103/PhysRevB.76.155433

[27]   L. Brey and H. A. Fertig, “Magnetoresistance of Graphene-Based Spin Valves,” Physical Review B, Vol. 76, No. 20, 2007, Article ID: 205435. doi:10.1103/PhysRevB.76.205435

[28]   P. Burset, A. L. Yeyati, L. Brey and H. A. Fertig, “Tran- sport in Superlattices on Single-Layer Graphene,” Physical Review B, Vol. 83, No. 19, 2011, Article ID: 195434.
doi:10.1103/PhysRevB.83.195434

[29]   J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. Von Klitzing and A. Yacoby, “Observation of Electron-Hole Puddles in Graphene Using a Scanning Single-Electron Transistor,” Nature Physics, Vol. 4, No. 2, 2008, pp. 144-148. doi:10.1038/nphys781

[30]   Y. Zhang, V. W. Brar, C. Girit, A. Zettl and M. F. Crom- mie, “Origin of Spatial Charge Inhomogeneity in Gra- phene,” Nature Physics, Vol. 5, No. 10, 2009, pp. 722- 726. doi:10.1038/nphys1365

 
 
Top