[1] S. Y. Auyang, “Foundations of Complex System Theories in Economics, Evolutionary Biology and Statistical Phy sics,” Cambridge University Press, Cambridge, 1998.
[2] S. Ellner and P. Turchin, “Chaos in a Noisy World: New Methods and Evidence from Time-Series Analyses,” The American Naturalist, Vol. 145, No. 3, 1995, pp. 343-375. doi:10.1086/285744
[3] J. Guckenheimer and P. Holmes, “Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields,” Springer-Verlag, Berlin, 1983.
[4] P. Kareva, “Predicting and Producing Chaos,” Nature, Vol. 375, No. 6528, 1995, pp. 189-190. doi:10.1038/375189a0
[5] T. Y. Lee and Yorke, “Period Three Implies Chaos,” American Mathematical Monthly, Vol. 82, No. 10, 1975, pp. 985-992. doi:10.2307/2318254
[6] R. M. May, “Biological Populations with Nonoverlapping Generations: Points, Stable Cycles and Chaos,” Science, Vol. 186, No. 4164, 1974, pp. 645-647. doi:10.1126/science.186.4164.645
[7] R. M. May, “Simple Mathematical Models with Very Complicated Dynamics,” Nature, Vol. 261, No. 5560, 1976, pp. 459-467. doi:10.1038/261459a0
[8] R. M. May, “Stability and Complexity in Model Ecosystems, Princeton Landmarks in Biology,” Princeton University Press, Princeton, 2001.
[9] R. M. May and G. F. Oster, “Bifurcations and Dynamic Complexity in Simple Ecological Models,” The American Naturalist, Vol. 110, No. 974, 1976, pp. 573-599. doi:10.1086/283092
[10] G. Sugihara and R. M. May, “Nonlinear Forecasting as a Way of Distinguishing Chaos from Measurement Error in time Series,” Nature, Vol. 344, No. 6268, 1990, pp. 734 741. doi:10.1038/344734a0
[11] R. Pool, “It Is Chaos, or Is It Just Noise?” Science, Vol. 243, 4887, 1989, pp. 25-28. doi:10.1126/science.2911717
[12] O. W. Ritter, P. A. Mosi?o and C. E. Buendía, “Dynamic Rain Model for Lineal Stochastic Environments,” Quaterly Journal of Meteorology, Vol. 49, No. 1, 1998, pp. 127-134.
[13] O. W. Ritter, O. E. Jauregui, R. S. Guzman, B. A. Estrada, N. H. Mu?oz, S. J. Suarez and V. M. C. Corona, “Eco logical and Agricultural Productivity Indices and Their Dynamics in a Sub-Humid/Semi-Arid Region from Cen tral México,” Journal of Arid Environments, Vol. 59, No. 4, 2004, pp. 753-769. doi:10.1016/j.jaridenv.2004.02.009
[14] O. W. Ritter and S. J. Suárez, “Predictability and Phase Space Relationships of Climatic Changes and Tuna Bio mass on the Eastern Pacific Ocean,” 6 eme Europeen de Science des Systemes Res-Systemica, Vol. No. 5, 2005.
[15] O. W. Ritter and S. J. Suarez, “Impact of ENSO and the Optimum Use of Yellowfin Tuna in the Easthern Pacific Ocean Region,” Ingenieria de Recursos Naturales y del Ambiente, Cali Colombia, 2011, pp. 109-116.
[16] S. J. Suarez, W. O. Ritter, C. G. Gay, J. Torres Jacome, “ENSO Tuna-Relations in the Eastern Pacific Ocean and Its Prediction as a Non-Linear Dynamic System,” Atmós fera, Vol. 17, No. 4, 2004, pp. 245-258.
[17] G. A. F. Seber, “Multivariate Observations,” Jhon Wiley & Sons, New York, 1984. doi:10.1002/9780470316641
[18] J. H. Vandermeer, “Elementary Mathematical Ecology,” John Wiley, New York, 1972.