MNSMS  Vol.3 No.1 , January 2013
Modeling Directionality of Liquid Crystalline Polymers on Arbitrary Meshes
ABSTRACT

The orientation of crystals in liquid crystalline polymers (LCPs) during the processing method affects the properties of these materials. In this paper, the main components of modeling the directionality of LCPs, namely Franks elastic energy equation, evolution equation and translation of directors are studied. The complexity of flow channels in polymer processing requires a more robust method for modeling directionality that can be applied to varieties of meshes. A method for practically simulating the directionality of crystallines on a macroscopic scale is developed. This method can be applied to any combination and type of meshes. The results show successful modeling of the directionality for each component of the model. Here, a 2D case with structured and unstructured mesh is considered and the rheology is simulated using ANSYS? FLUENT?. C++ codes written for user defined functions (UDFs) are used to implement the directionality simulation.


Cite this paper
A. Ahmadzadegan, M. Zimmerman and A. Saigal, "Modeling Directionality of Liquid Crystalline Polymers on Arbitrary Meshes," Modeling and Numerical Simulation of Material Science, Vol. 3 No. 1, 2013, pp. 1-6. doi: 10.4236/mnsms.2013.31001.
References
[1]   F. M. Leslie, “Some Constitutive Equations for Liquid Crystals,” Archive for Rational Mechanics and Analysis, Vol. 28, No. 4, 1968, pp. 265-283.

[2]   J. Ericksen, “Transversely Isotropic Fluids,” Colloid and Polymer Science,” Vol. 173, No. 2, 1960, pp. 117-122.

[3]   G. Goldbeck-Wood, P. Coulter, J. R. Hobdell, M. S. Lavine, K. Yonetake and A. H. Windle, “Modelling of Liquid Crystal Polymers at Different Length Scales,” Molecular Simulation, Vol. 21, No. 2-3, 1998, pp. 143-160.

[4]   F. C. Frank, “I. Liquid crystals. On the Theory of Liquid Crystals,” Discussions of the Faraday Society,” Vol. 25, 1958, pp. 19-28.

[5]   Ansys, “FLUENT, Version 13,” Ansys Inc., Canonsburg, 2010.

[6]   A. Ahmadzadegan, A. Saigal and M. A. Zimmerman, “Investigating the Rheology of LCPs through Different Die Geometries,” In: J.-Y. Hwang, S. N. Monteiro, C.-G. Bai, J. Carpenter, M. Cai, D. Firrao and B.-G. Kim, Eds., Characterization of Minerals, Metals, and Materials, John Wiley & Sons, Hoboken, 2012. doi:10.1002/9781118371305.ch41

[7]   A. M. Donald, A. H. Windle and S. Hanna, “Liquid Crystalline Polymers,” Cambridge University Press, Cambridge, 2006. doi:10.1017/CBO9780511616044

[8]   M. S. Lavine and A. H. Windle, “Computational Modelling of Declination Loops under Shear Flow,” Macromolecular Samposia, Vol. 124, No. 1, 1997, pp. 35-47. doi:10.1002/masy.19971240107

[9]   C. W. Oseen, “The Theory of Liquid Crystals,” Transactions of The Faraday Society, Vol. 29, No. 140, 1933, pp. 883-899,

[10]   T. Odijk, “Theory of Lyotropic Polymer Liquid Crystals,” Macromolecules, Vol. 19, No. 9, 1986, pp. 2313-2329.

[11]   R. B. Meyer, A. Cifferi and W. R. Krigbaum, “Polymer Liquid Crystals,” Academic Press, New York, 1982.

[12]   J. Hobdell and A. Windle, “A Numerical Technique for Predicting Microstructure in Liquid Crystalline Poly mers,” Liquid Crystal, Vol. 23, No. 2, 1997, pp. 157-173.

[13]   A. H. Windle, H. E. Assender, M. S. Lavine, A. Donald, T. C. B. McLeish, E. L. Thomas, A. H. Windle, et al., “Modelling of Form in Thermotropic Polymers and Discussion,” Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, Vol. 348, No. 1686, 1994, pp. 73-96.

[14]   M. Doi and S. F. Edwards, “The Theory of Polymer Dynamics,” Oxford University Press, Oxford, 1988.

[15]   R. G. Larson, “On the Relative Magnitudes of Viscous, Elastic and Texture Stresses in Liquid Crystalline PBG Solutions,” Rheologica Acta, Vol. 35, No. 2, 1996, pp. 150159.

[16]   L. T. Creagh and A. R. Kmetz, “Mechanism of Surface Alignment in Nematic Liquid Crystals,” Molecular Crystals and Liquid Crystals, Vol. 24, No. 1-2, 1973, pp. 5968. doi:10.1080/15421407308083389

 
 
Top