JBNB  Vol.4 No.1 , January 2013
Osteoconductivity of Superhydrophilic Anodized TiO2 Coatings on Ti Treated with Hydrothermal Processes
ABSTRACT

Surface hydrophilicity is considered to have a strong influence on the biological reactions of bone-substituting materials. However, the influence of a hydrophilic surface on osteoconductivity is not completely clear, especially for superhydrophilic surfaces. In this study, we conferred superhydrophilic properties on anodized TiO2 coatings using a hydrothermal treatment, and developed a method to maintain this surface until implantation. The osteoconductivity of these coatings was evaluated with in vivo tests. A hydrothermal treatment made the surface of as-anodized samples more hydrophilic, up to a water contact angle of 13 (deg.). Storage in both air and distilled water increased the water contact angle after several days because of the adsorption of hydrocarbon. However, storage in phosphate buffered solution led to a reduction in the water contact angle, because of the adsorption of the inorganic ions in the solution, and the sample retained its high hydrophilicity for a long time. As the water contact angle decreased, the hard tissue formation ratio increased continuously up to 58%, which was about four times higher than the hard tissue formation ratio on as-polished Ti.


Cite this paper
D. Yamamoto, K. Arii, K. Kuroda, R. Ichino, M. Okido and A. Seki, "Osteoconductivity of Superhydrophilic Anodized TiO2 Coatings on Ti Treated with Hydrothermal Processes," Journal of Biomaterials and Nanobiotechnology, Vol. 4 No. 1, 2013, pp. 45-52. doi: 10.4236/jbnb.2013.41007.
References
[1]   J. Park and R. S. Lakes, “Biomaterials,” 3rd Edition, Springer, New York, 2007.

[2]   K. Kuroda, R. Ichino, M. Okido and O. Takai, “Hydroxyapatite Coating on Titanium by Thermal Substrate Method in Aqueous Solution,” Journal of Biomedical Materials Research Part A, Vol. 59, No. 2, 2002, pp. 390-397. doi:10.1002/jbm.10002

[3]   K. Kuroda, R. Ichino, M. Okido and O. Takai, “Effects of Ion Concentration and pH on Hydroxyapatite Deposition from Aqueous Solution onto Titanium by the Thermal Substrate Method,” Journal of Biomedical Materials Research Part A, Vol. 61, No. 3, 2002, pp. 354-359. doi:10.1002/jbm.10197

[4]   K. Kuroda, Y. Miyashita, R. Ichino, M. Okido and O. Takai, “Preparation of Calcium Phosphate Coatings on Titanium Using the Thermal Substrate Method and Their in vitro Evaluation,” Materials Transactions, Vol. 43, No. 12, 2002, pp. 3015-3019. doi:10.2320/matertrans.43.3015

[5]   K. Kuroda, S. Nakamoto, R. Ichino, M. Okido and R. M. Pilliar, “Hydroxyapatite Coatings on a 3D Porous Surface Using Thermal Substrate Method,” Materials Transactions, Vol. 46, No. 7, 2005, pp. 1633-1635. doi:10.2320/matertrans.46.1633

[6]   K. Kuroda, S. Nakamoto, Y. Miyashita, R. Ichino and M Okido, “Osteoinductivity of HAp Films with Different Surface Morphologies Coated by the Thermal Substrate Method in Aqueous Solutions,” Materials Transactions, Vol. 47, No. 5, 2006, pp. 1391-1394. doi:10.2320/matertrans.47.1391

[7]   K. Kuroda, M. Moriyama, R. Ichino, M. Okido and A. Seki, “Formation and in Vivo Evaluation of Carbonate Apatite and Carbonate Apatite/CaCO3 Composite Films Using the Thermal Substrate Method in Aqueous Solution,” Materials Transactions, Vol. 49, No. 6, 2008, pp. 1434-1440. doi:10.2320/matertrans.MRA2007330

[8]   K. Kuroda, M. Moriyama, R. Ichino, M. Okido and A. Seki, “Formation and Osteoconductivity of Hydroxyapatite/Collagen Composite Films Using a Thermal Substrate Method in Aqueous Solutions,” Materials Transactions, Vol. 50, No. 5, 2009, pp. 1190-1195. doi:10.2320/matertrans.MRA2008459

[9]   H.-J. Song, S.-H. Park, S.-H. Jeong and Y.-J. Park, “Surface Characteristics and Bioactivity of Oxide Films Formed by Anodic Spark Oxidation on Titanium in Different Electrolytes,” Journal of Materials Processing Technology, Vol. 209, No. 2, 2009, pp. 864-870. doi:10.1016/j.jmatprotec.2008.02.055

[10]   X. Cui, H.-M. Kim, M. Kawashita, L. Wang, T. Xiong, T. Kokubo and T. Nakamura, “Preparation of Bioactive Titania Films on Titanium Metal via Anodic Oxidation,” Dental Materials, Vol. 25, No. 1, 2009, pp. 80-86. doi:10.1016/j.dental.2008.04.012

[11]   D. Yamamoto, I. Kawai, K. Kuroda, R. Ichino, M. Okido and A. Seki, “Osteoconductivity of Anodized Titanium with Controlled Micron-Level Surface Roughness,” Materials Transactions, Vol. 52, No. 8, 2011, pp. 1650-1654. doi:10.2320/matertrans.M2011049

[12]   D. Yamamoto, T. Iida, K. Kuroda, R. Ichino M. Okido and A. Seki, “Formation of Amorphous TiO2 Film on Ti Using Anodizingin Concentrated H3PO4 Aqueous Solution and Its Osteoconductivity,” Materials Transactions, Vol. 53, No. 3, 2012, pp. 508-512. doi:10.2320/matertrans.M2011234

[13]   D. Yamamoto, I. Kawai, K. Kuroda, R. Ichino M. Okido and A. Seki, “Osteoconductivity and Hydrophilicity of TiO2 Coatings on Ti Substrates Prepared by Different Oxidizing Processes,” Bioinorganic Chemistry and Applications, in Press.

[14]   D. Yamamoto, T. Iida, K. Arii, K. Kuroda, R. Ichino M. Okido and A. Seki, “Surface Hydrophilicity and Osteoconductivity of Anodized Ti in Aqueous Solutions with Various Solute Ions,” Materials Transactions, Vol. 53, No. 11, 2012, pp. 1956-1961. doi:10.2320/matertrans.M2012082

[15]   K. L. Kilpadi, P. L. Chang, and S. L. Bellis, “Hydroxylapatite Binds More Serum Proteins, Purified Integrins, and Osteoblast Precursor Cells than Titanium or Steel,” Journal of Biomedical Materials Research Part A, Vol. 57, No. 2, 2001, pp. 258-267. doi: 10.1002/1097-4636(200111)

[16]   F. Rupp, L. Scheideler, N. Olshanska, M. de Wild, M. Wieland, and J. Geis-Gerstorfer, “Enhancing Surface Free Energy and Hydrophilicity through Chemical Modification of Microstructured Titanium Implant Surfaces,” Journal of Biomedical Materials Research Part A, Vol. 76A, No. 2, 2006, pp. 323-334. doi: 10.1002/jbm.a.30518

[17]   K. Das, S. Bose and A. Bandyopadhyay, “Surface Modifications and Cell-Materials Interactions with Anodized Ti,” Acta Biomaterialia, Vol. 3, No. 4, 2007, pp. 573-585. doi:10.1016/j.actbio.2006.12.003

[18]   M. Bigerelle, K. Anselme, B. Noel, I. Ruderman, P. Hardouin and A. Iost, “Improvement in the Morphology of Ti-Based Surfaces: A New Process to Increase in Vitro Human Osteoblast Response,” Biomaterials, Vol. 23, No. 7, 2002, pp. 1563-1577. doi:10.1016/S0142-9612(01)00271-X

[19]   Y. Arima and H. Iwata, ”Effect of Wettability and Surface Functional Groups on Protein Adsorption and Cell Adhesion Using Well-defined Mixed Self-assembled Monolayers,” Biomaterials, Vol. 28, No. 20, 2007, pp. 3074-3082. doi:10.1016/j.biomaterials.2007.03.013

[20]   M. E. Simonsen, Z. Li and E. G. Sogaard, “Influence of the OH Groups on the Photocatalytic Activity and Photo-induced Hydrophilicity of Microwave Assisted Sol-Gel TiO2 Film,” Applied Surface Science, Vol. 255, No. 18, 2009, pp. 8054-8062. doi:10.1016/j.apsusc.2009.05.013

[21]   K.-X. Zhang, W. Wang, J.-L. Hou, J.-H. Zhao, Y. Zhang and Y.-C. Fang, “Oxygen Plasma Induced Hydrophilicity of TiO2 Thin Films,” Vacuum, Vol. 85, No. 11, 2011, pp. 990-993. doi:10.1016/j.vacuum.2011.02.006

[22]   J. Takebe, S. Ito, S. Miura, K. Miyata and K. Ishibashi, “Physicochemical State of the Nanotopographic Surface of Commercially Pure Titanium Following Anodization-Hydrothermal Treatment Reveals Significantly Improved Hydrophilicity and Surface Energy Profiles,” Materials Science and Engineering: C, Vol. 32, No. 1, 2012, pp. 55-60. doi:10.1016/j.msec.2011.09.011

[23]   W. Att, N. Hori, M. Takeuchi, J. Ouyang, Y. Yang, M. Anpo and T. Ogawa, “Time-Dependent Degradation of Titanium Osteoconductivity: An Implication of Biological Aging of Implant Materials,” Biomaterials, Vol. 30, No. 29, 2009, pp. 5352-5363. doi:10.1016/j.biomaterials.2009.06.040

[24]   C. Y. Kramer, “Extension of Multiple Range Tests to Group Means with Unequal Numbers of Replications,” Biometrics, Vol. 12, No. 3, 1956, pp. 307-310. doi:10.2307/3001469

[25]   S. Takeda and M. Fukawa, “Surface OH Groups Governing Surface Chemical Properties of SiO2 Thin Films Deposited by RF Magnetron Sputtering,” Thin Solid Films, Vol. 444, No. 1-2, 2003, pp. 153-157. doi:10.1016/S0040-6090(03)01094-0

[26]   H. P. Jennissen, “Stabilizing Ultra-Hydrophilic Surfaces by an Exsiccation Layer of Salts and Implications of the Hofmeistereffect,” Materialwissenschaft und Werkstofftechnik, Vol. 41, No. 12, 2010, pp. 1035-1039. doi: 10.1002/mawe.201000705

 
 
Top