JMP  Vol.4 No.1 , January 2013
Macroscopic Quantum Tunneling
Abstract: In this work, a mechanism of macroscopic quantum tunneling is studied, which shows this sort of phenomena may exist even in the bio-field system. The relevant Davydov solitons fields and the Feynman digraph have been constructed based on the nonlinear Green function theory, which allows one to get a synchronous resonance model to explain the macroscopic quantum tunneling, such as in double potential wells system. Furthermore, the functional of quantum information density can also be applied to drive the object into a type of soliton structure of quantum information density, which allows the system to possess property of the macroscopic quantum tunneling.
Cite this paper: Q. Bi and K. Song, "Macroscopic Quantum Tunneling," Journal of Modern Physics, Vol. 4 No. 1, 2013, pp. 49-55. doi: 10.4236/jmp.2013.41009.

[1]   D. J. Griffiths, “Introduction to Quantum Mechanics,” 2nd Edition, Addison-Wesley Press, Boston, 2004.

[2]   A. Smerzi, S. Fantoni, S. Giovanazzi, et al., “Quantum Coherent Atomic Tunneling between Two Trapped Bose-Einstein Condensates,” Physical Review Letters, Vol. 79, No. 25, 1997, pp. 4950-4953.

[3]   M. Albiez, R. Gati, J. Folling, et al., “Direct Observation of Tunneling and Nonlinear Self-Trapping in a Double Bosonic Josephson Junction,” Physical Review Letters, Vol. 95, No. 1, Article ID: 010402.

[4]   J. Liu, “Dynamics for the Bose-Einstein Condensation,” Science Press, Bejing, 2009.

[5]   Z. L. Duan, B. X. Fan, et al., “Quantum Tunneling Time of a Bose-Einstein Condensate Traversing through a Laser-Induced Potential Barrier,” Physical Review A, Vol. 81, No. 5, 2010, Article ID: 055602.

[6]   G. Dekela, O. V. Farberovichb, A. Sofferc and V. Fleurov, “Nonlinear Dynamic Phenomena in Macroscopic Tunneling,” Physica D, Vol. 238, No. 15, 2009, pp. 1475-1481. doi:10.1016/j.physd.2008.06.013

[7]   K. Z. Song, “The Existence and Significance of Parapsychological Function,” Journal of International Society of Life Information Science (ISLIS), Vol. 17, No 1, 1999, pp. 198-214.

[8]   K. Z. Song, R. L. Lan, X. G. Li and L. Z. Zhou, “The Research of the Break through Spacial Obstacle Function, Create Somatic Science, 705-717,” Sichuan Educate Publisher, Beijing, 1989.

[9]   K. D. Sattler, “Handbook of Nanophysics 3: Nanoparticles and Quantum Dots, Volume 3,” Taylor & Francis Group, CRC Press, New York, 2011.

[10]   X. F. Pang and Y.-P. Feng, “Quantum Mechanics in Nonlinear Systems,” World Scientific Publishing, Singapore City, 2005.

[11]   Q. Bi, “Bio-Solitons Return Life,” International Review of Physics, Vol. 3, No. 5, 2009, pp. 278-288.

[12]   Q. Bi, K. Z. Song and H. E. Ruda, “Characteristics of Coherence and Information for the Davydov Soliton Field,” Journal of Modern Physics, Vol. 3, No. 12, 2012, pp. 1907-1913.

[13]   S. Doniach and E. H. Sondheimer, “Green’s Functions for Solid State Physicists,” The Benjamin/Cummings Company, Inc., London, 1982.

[14]   Q. Bi and H. E. Ruda, “Green Functions for Nonlinear Operators and Application to Quantum Computing,” Physica A, Vol. 334, No. 3, 2004, pp. 459-476. doi:10.1016/j.physa.2003.10.077

[15]   Charles Schwartz, “Nonlinear Operators and Their Propagators,” Journal of Mathematical Physics, Vol. 38, No. 1, 1997, pp. 484-500. doi:10.1063/1.531829

[16]   B. H. Wu, et al., “Introduction to Science of Human Body,” Sichuan University Publishing House, Chengdu, 1998.

[17]   Q. Bi, X. S. Xing and H. E. Ruda, “Dynamical Equations for Quantum Information and Application in Information Channel,” Chinese Physics Letters, Vol. 7, No. 7, 2005, pp. 1618-1621.

[18]   S. G. Schirmer, A. D. Greentree, V. Ramakrishna and H. Rabitz, “Quantum Control Using Sequences of Simple Control Pulses,” quant-ph/0105155.

[19]   V. Ramakrishna, R. Ober, X. Sun, O. Steuernagel, J. Botina and H. Rabitz, “Explicit Generation of Unitary Transformations in a Single Atom or Molecule,” Physical Review A, Vol. 61, No. 3, 2000, Article ID: 032106.