Wormholes Supported by a Combination of Normal and Quintessential Matter in Einstein and Einstein-Maxwell Gravity

ABSTRACT

It is shown in the first part of this paper that a combined model comprising ordinary and quintessential matter can support a traversable wormhole in Einstein-Maxwell gravity. Since the solution allows zero tidal forces, the wormhole is suitable for a humanoid traveler. The second part of the paper shows that the electric field can be eliminated (Einstein gravity), but only by tolerating enormous tidal forces. Such a wormhole would still be capable of transmitting signals.

It is shown in the first part of this paper that a combined model comprising ordinary and quintessential matter can support a traversable wormhole in Einstein-Maxwell gravity. Since the solution allows zero tidal forces, the wormhole is suitable for a humanoid traveler. The second part of the paper shows that the electric field can be eliminated (Einstein gravity), but only by tolerating enormous tidal forces. Such a wormhole would still be capable of transmitting signals.

Cite this paper

P. Kuhfittig, "Wormholes Supported by a Combination of Normal and Quintessential Matter in Einstein and Einstein-Maxwell Gravity,"*Journal of Modern Physics*, Vol. 4 No. 1, 2013, pp. 30-34. doi: 10.4236/jmp.2013.41006.

P. Kuhfittig, "Wormholes Supported by a Combination of Normal and Quintessential Matter in Einstein and Einstein-Maxwell Gravity,"

References

[1] M. S. Morris and K. S. Thorne, “Wormholes in Spacetime and Their Use for Interstellar Travel: A Tool for Teaching General Relativity,” American Journal of Physics, Vol. 56, No. 5, 1988, pp. 395-412. doi:10.1119/1.15620

[2] A. G. Riess, et al., “Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astronomical Journal, Vol. 116, No. 3, 1998, pp. 1009-1038. doi:10.1086/300499

[3] S. J. Perlmutter, et al., “Measurements of Ω and Λ from 42 High-Redshift Supernovae,” Astrophysical Journal, Vol. 517, No. 2, 1999, pp. 565-586. doi:10.1086/307221

[4] M. Carmeli, arXiv: astro-ph/0111259, 22 p.

[5] S. V. Sushkov, “Wormholes Supported by a Phantom Energy,” Physical Review D, Vol. 71, No. 4, 2005, Article ID: 043520.

[6] O. B. Zaslavskii, “Exactly Solvable Model of a Wormhole Supported by Phantom Energy,” Physical Review D, Vol. 72, No. 6, 2005, Article ID: 061303.

[7] F. S. N. Lobo, “Phantom Energy Traversable Wormholes,” Physical Review D, Vol. 71, No. 8, 2005, Article ID: 084011.

[8] P. K. F. Kuhfittig, “Seeking Exactly Solvable Models of Traversable Wormholes Supported by Phantom Energy,” Classical and Quantum Gravity, Vol. 23, No. 20, 2006, pp. 5853-5860. doi:10.1088/0264-9381/23/20/007

[9] F. Rahaman, M. Kalam, M. Sarkar and K. Gayen, “A Theoretical Construction of Wormhole Supported by Phantom Energy,” Physics Letters B, Vol. 633, No. 2-3, 2006, pp. 161-163. doi:10.1016/j.physletb.2005.11.080

[10] P. K. F. Kuhfittig, F. Rahaman and A. Ghosh, “Quintom Wormholes,” International Journal of Theoretical Physics, Vol. 49, No. 6, 2010, pp. 1222-1231. doi:10.1007/s10773-010-0302-9

[11] V. V. Kiselev, “Quintessence and Black Holes,” Classical and Quantum Gravity, Vol. 20, No. 6, 2003, pp. 1187-1197. doi:10.1088/0264-9381/20/6/310

[12] F. Rahaman, P. K. F. Kuhfittig, K. Chakraborty, M. Kalam and D. Hossain, “Modeling Galactic Halos with Predominantly Quintessential Matter,” International Journal of Theoretical Physics, Vol. 50, No. 9, 2011, pp. 2655-2665. doi:10.1007/s10773-011-0761-7

[13] A. A. Usmani, F. Rahaman, S. Ray, K. K. Nandi, P. K. F. Kuhfittig, Sk. A. Rakib and Z. Hasan, “Charged Gravastars Admitting Conformal Motion,” Physics Letters B, Vol. 701, No. 4, 2011, pp. 388-392. doi:10.1016/j.physletb.2011.06.001

[14] F. Rahaman, M. Kalam and K.A. Rahman, “Wormhole Geometry from Real Feasible Matter Sources,” International Journal of Theoretical Physics, Vol. 48, No. 2, 2009, pp. 471-475. doi:10.1007/s10773-008-9822-y

[15] J. P. S. Lemos, F. S. N. Lobo and S. Q. de Oliveira, “Morris-Thorne Wormholes with a Cosmological Constant,” Physical Review D, Vol. 68, No. 6, 2003, Artical ID: 064004.

[16] J. P. S. Lemos and F. S. N. Lobo, “Plane Symmetric Traversable Wormholes in an Anti-de Sitter Background,” Physical Review D, Vol. 69, No. 10, 2004, Article ID: 104007.

[17] P. K. F. Kuhfittig, “A Single Model of Traversable Wormholes Suppported by Generalized Phantom Energy or Chaplygin Gas,” General Relativity and Gravitation, Vol. 41, No. 7, 2009, pp. 1485-1496. doi:10.1007/s10714-008-0716-3

[18] R. Bousso, “The Cosmological Constant,” General Relativity and Gravitation, Vol. 40, No. 2-3, 2008, pp. 607- 637. doi:10.1007/s10714-007-0557-5

[19] P. K. F. Kuhfittig, “Some Remarks on Exact Wormhole Solutions,” Advanced Studies in Theoretical Physics, Vol. 5, No. 8, 2011, pp. 365-370.

[1] M. S. Morris and K. S. Thorne, “Wormholes in Spacetime and Their Use for Interstellar Travel: A Tool for Teaching General Relativity,” American Journal of Physics, Vol. 56, No. 5, 1988, pp. 395-412. doi:10.1119/1.15620

[2] A. G. Riess, et al., “Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astronomical Journal, Vol. 116, No. 3, 1998, pp. 1009-1038. doi:10.1086/300499

[3] S. J. Perlmutter, et al., “Measurements of Ω and Λ from 42 High-Redshift Supernovae,” Astrophysical Journal, Vol. 517, No. 2, 1999, pp. 565-586. doi:10.1086/307221

[4] M. Carmeli, arXiv: astro-ph/0111259, 22 p.

[5] S. V. Sushkov, “Wormholes Supported by a Phantom Energy,” Physical Review D, Vol. 71, No. 4, 2005, Article ID: 043520.

[6] O. B. Zaslavskii, “Exactly Solvable Model of a Wormhole Supported by Phantom Energy,” Physical Review D, Vol. 72, No. 6, 2005, Article ID: 061303.

[7] F. S. N. Lobo, “Phantom Energy Traversable Wormholes,” Physical Review D, Vol. 71, No. 8, 2005, Article ID: 084011.

[8] P. K. F. Kuhfittig, “Seeking Exactly Solvable Models of Traversable Wormholes Supported by Phantom Energy,” Classical and Quantum Gravity, Vol. 23, No. 20, 2006, pp. 5853-5860. doi:10.1088/0264-9381/23/20/007

[9] F. Rahaman, M. Kalam, M. Sarkar and K. Gayen, “A Theoretical Construction of Wormhole Supported by Phantom Energy,” Physics Letters B, Vol. 633, No. 2-3, 2006, pp. 161-163. doi:10.1016/j.physletb.2005.11.080

[10] P. K. F. Kuhfittig, F. Rahaman and A. Ghosh, “Quintom Wormholes,” International Journal of Theoretical Physics, Vol. 49, No. 6, 2010, pp. 1222-1231. doi:10.1007/s10773-010-0302-9

[11] V. V. Kiselev, “Quintessence and Black Holes,” Classical and Quantum Gravity, Vol. 20, No. 6, 2003, pp. 1187-1197. doi:10.1088/0264-9381/20/6/310

[12] F. Rahaman, P. K. F. Kuhfittig, K. Chakraborty, M. Kalam and D. Hossain, “Modeling Galactic Halos with Predominantly Quintessential Matter,” International Journal of Theoretical Physics, Vol. 50, No. 9, 2011, pp. 2655-2665. doi:10.1007/s10773-011-0761-7

[13] A. A. Usmani, F. Rahaman, S. Ray, K. K. Nandi, P. K. F. Kuhfittig, Sk. A. Rakib and Z. Hasan, “Charged Gravastars Admitting Conformal Motion,” Physics Letters B, Vol. 701, No. 4, 2011, pp. 388-392. doi:10.1016/j.physletb.2011.06.001

[14] F. Rahaman, M. Kalam and K.A. Rahman, “Wormhole Geometry from Real Feasible Matter Sources,” International Journal of Theoretical Physics, Vol. 48, No. 2, 2009, pp. 471-475. doi:10.1007/s10773-008-9822-y

[15] J. P. S. Lemos, F. S. N. Lobo and S. Q. de Oliveira, “Morris-Thorne Wormholes with a Cosmological Constant,” Physical Review D, Vol. 68, No. 6, 2003, Artical ID: 064004.

[16] J. P. S. Lemos and F. S. N. Lobo, “Plane Symmetric Traversable Wormholes in an Anti-de Sitter Background,” Physical Review D, Vol. 69, No. 10, 2004, Article ID: 104007.

[17] P. K. F. Kuhfittig, “A Single Model of Traversable Wormholes Suppported by Generalized Phantom Energy or Chaplygin Gas,” General Relativity and Gravitation, Vol. 41, No. 7, 2009, pp. 1485-1496. doi:10.1007/s10714-008-0716-3

[18] R. Bousso, “The Cosmological Constant,” General Relativity and Gravitation, Vol. 40, No. 2-3, 2008, pp. 607- 637. doi:10.1007/s10714-007-0557-5

[19] P. K. F. Kuhfittig, “Some Remarks on Exact Wormhole Solutions,” Advanced Studies in Theoretical Physics, Vol. 5, No. 8, 2011, pp. 365-370.