Back
 PP  Vol.4 No.1 , January 2013
Ibuprofen-Maltodextrin Interaction: Study of Enantiomeric Recognition and Complex Characterization
Abstract: The interaction between ibuprofen and maltodextrins with different dextrose equivalent was studied in solution and solid state in order to investigate the effect on the solubility of ibuprofen and to determine their usefulness in terms of chiral recognition. Apparent binding constants were calculated using nuclear magnetic resonance spectroscopy experiments and solubility studies. The results showed an increase in the apparent solubility of ibuprofen in the presence of maltodextrins that depended on their ionization state. The freeze-drying method was used to prepare solid complexes, while physical mixtures were obtained by simple blending. These solid systems were characterized in the solid state using differential scanning calorimetry, thermogravimetric analysis, Fourier Transform-Infrared spectroscopy, scanning electron microscopy and X-ray diffractometry. Detailed nuclear magnetic resonance studies provided evidence of the influence of the type and concentration of the maltodextrin host on the chiral recognition of racemic ibuprofen, indicating that these linear ligands act as chiral selectors.
Cite this paper: C. Garnero, C. Aloisio and M. Longhi, "Ibuprofen-Maltodextrin Interaction: Study of Enantiomeric Recognition and Complex Characterization," Pharmacology & Pharmacy, Vol. 4 No. 1, 2013, pp. 18-30. doi: 10.4236/pp.2013.41003.
References

[1]   J. D. Higgins, T. P. Gilmor, S. A. Martellucci, R. D. Bruce and H. G. Brittain, “Ibuprofen,” Analytical Profiles of Drug Substances, Vol. 27, Academic Press, London, 2001.

[2]   S. S. Adams, P. Bresloff and C. G. Manson, “Pharmacological Differences between the Optical Isomers of Ibuprofen: Evidence for Metabolic Inversion of the (-)-Isomer,” Journal of Pharmacy and Pharmacology, Vol. 28, No. 3, 1976, pp. 256-257. doi:10.1111/j.2042-7158.1976.tb04144.x

[3]   C. J. Nunez Aguero, C. M. Escobar Llanos, D. Diaz, C. Jaime and R. Gardu?o Juarez, “Chiral Discrimination of Ibuprofen Isomers in -Cyclodextrin Inclusion Complexes: Experimental (NMR) and Theoretical (MD, MM/GBSA) Studies,” Tetrahedron, Vol. 62, No. 17, 2006, pp. 4162-4172. doi:10.1016/j.tet.2006.02.010?

[4]   P. Valderrama and R. J. Poppi, “Second Order Standard Addition Method and Fluorescence Spectroscopy in the Quantification of Ibuprofen Enantiomers in Biological Fluids,” Chemometrics and Intelligent Laboratory Systems, Vol. 106, No. 2, 2011, pp. 160-165. doi:10.1016/j.chemolab.2010.05.012

[5]   K. Busch, I. Swamidoss, S. Fakayode and M. Busch, “Determination of the Enantiomeric Composition of Some Molecules of Pharmaceutical Interest by Chemometric Analysis of the UV Spectra of Cyclodextrin Guest-Host Complexes,” Analytica Chimica Acta, Vol. 525, No. 1, 2004, pp. 53-62. doi:10.1016/j.aca.2004.07.066

[6]   K. Ozoemena, R. Stefan, J. van Staden and H. Aboul-Enein, “Utilization of Maltodextrin Based Enanti-Oselective, Potentiometric Membrane Electrodes for the Enantioselective Assay of S-Perindopril,” Talanta, Vol. 62, No. 4, 2004, pp. 681-685. doi:10.1016/j.talanta.2003.08.035

[7]   M. Shamsipur, L. Dastjerdi, S. Haghgoo, D. Armspach, D. Matt and H. Aboul-Enein, “Chiral Selectors for Enantioresolution and Quantitation of the Antidepressant Drug Fluoxetine in Pharmaceutical Formulations by 19F NMR Spectroscopic Method,” Analytica Chimica Acta, Vol. 601, No. 1, 2007, pp. 130-138. doi:10.1016/j.aca.2007.08.017

[8]   J. Wang and L. Wang, “Structures and Properties of Commercial Maltodextrins from Corn, Potato, and Rice Starches,” Starch/Starke, Vol. 52, 2000, pp. 296-304. doi:10.1002/1521-379X(20009)52:8/9<296::AID-STAR296>3.0.CO;2-A

[9]   L. Dokic-Baucal, P. Dokic and J. Jakovljevic, “Influence of Different Maltodextrins on Properties of O/W Emulsions,” Food Hydrocolloids, Vol. 18, No. 2, 2004, pp. 233-239. doi:10.1016/S0268-005X(03)00068-7

[10]   H. Soini, M. Stefansson, M. Riekkola and M. Novotny, “Maltooligosaccharides as Chiral Selectors for the Separation of Pharmaceuticals by Capillary Electrophoresi,” Analytical Chemistry, Vol. 66, 1994, pp. 3477-3484. doi:10.1021/ac00092a028

[11]   T. Higuchi and K. A. Connors, “Phase-Solubility Techniques,” In: C. N. Reilly, Ed., Advances in Analytical Chemistry and Instrumentation, Wiley-Interscience, New York, Vol. 4, 1965, pp. 117-212.

[12]   H. Benesi and J. Hildebrand, “A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons,” Journal of the American Chemical Society, Vol. 71, No. 8, 1949, pp. 2703-2707. doi:10.1021/ja01176a030

[13]   R. L. Scott, “Some Comments on the Benesi-Hildebrand Equation,” Recueil des Travaux Chimiques, Vol. 75, No. 7, 1956, pp. 787-789. doi:10.1002/recl.19560750711

[14]   K. H. Fromming and J. Szejtli, “Cyclodextrin Inclusion Complexes,” Cyclodextrins in Pharmacy, Kluwer Academic Publishers, Dodrecht/Boston/London, 1994.

[15]   G. Granero, C. Garnero and M. Longhi, “The Effect of pH and Triethanolamine on Sulfisoxazole Complexation with Hydroxypropyl-β-Cyclodextrin,” European Journal of Pharmaceutical Sciences, Vol. 20, No. 3, 2003, pp. 285-293. doi:10.1016/S0928-0987(03)00202-1

[16]   G. Endresz, B. Chankvetadze, D. Bergenthal and G. Blaschke, “Comparative Capillary Electrophoretic and Nuclear Magnetic Resonance Studies of the Chiral Recognition of Racemic Metomidate with Cyclodextrin Hosts,” Journal of Chromatography A, Vol. 732, No. 1, 1996, pp. 133-142. doi:10.1016/0021-9673(95)01244-3

[17]   K. Kano, H. Hasegawa and M. Miyamura, “Chiral Recognition of Dipeptide Methyl Esters by an Anionic β-Cyclodextrin,” Chirality, Vol. 13, 2001, pp. 474-482. doi:10.1002/chir.1064

[18]   C. F. Dignam, L. A. Randall, R. D. Blacken, P. R. Cunningham, S. G. Lester, M. J. Brown, S. C. French, S. E. Aniagyei and T. J. Wenzel, “Carboxymethylated Cyclodextrin Derivatives as Chiral NMR Discriminating Agents,” Tetrahedron: Asymmetry, Vol. 17, No. 8, 2006, pp. 1199-1208. doi:10.1016/j.tetasy.2006.04.006

[19]   I. Oh, M. Y. Lee, Y. B. Lee, S. C. Shin and I. Park, “Spectroscopic Characterization of Ibuprofen/2-Hydroxypropyl-β-Cyclodextrin Inclusion Complex,” International Journal of Pharmaceutics, Vol. 175, No. 2, 1998, pp. 215-223. doi:10.1016/S0378-5173(98)00286-5

[20]   A. Wangsakan, D. McClements, P. Chinachoti and C. Dickinson, “Two-Dimensional Rotating-Frame Overhauser Spectroscopy (ROESY) and 13C NMR Study of the Interactions between Maltodextrin and an Anionic Surfactant,” Carbohydrate Research, Vol. 339, No. 6, 2004, pp. 1105-1111. doi:10.1016/j.carres.2004.01.019

[21]   M. V. Rekharsky and Y. Innoue, “Complexation and Chiral Recognition Thermodynamics of 6-Amino-6-deoxy-beta-cyclodextrin with Anionic, Cationic, and Neutral Chiral Guests: Counterbalance between van der Waals and Coulombic Interactions,” Journal of the American Chemical Society, Vol. 124, 2002, pp. 813-826. doi:10.1021/ja010889z

[22]   N. Najib, M. Suleiman and A. Malakh, “Characteristics of the in Vitro Release of Ibuprofen from Polyvinylpyrrolidone Solid Dispersions,” International Journal of Pharmaceutics, Vol. 32, No. 2-3,1986, pp. 229-236. doi:10.1016/0378-5173(86)90183-3

[23]   N. Colthup, L. Daly and S. Wiberly, “Introduction to Infrared and Raman Spectroscopy,” Academic Press, New York, 1990, pp. 163-181. doi:10.1016/S0378-5173(00)00603-7

[24]   M. Iervolino, B. Capello, S. Raghavan and J. Hadgraft, “Penetration Enhancement of Ibuprofen from Supersaturated Solutions through Human Skin,” International Journal of Pharmaceutics, Vol. 212, No. 1, 2001, pp. 131-141.

[25]   E. Park, S. Chang, M. Hahn and S. Chi, “Enhancing Effect of Polyoxyethylene Alkyl Ethers on the Skin Permeation of Ibuprofen,” International Journal of Pharmaceutics, Vol. 209, No. 1, 2000, pp. 109-119. doi:10.1016/S0378-5173(00)00559-7

[26]   T. Shakhtshneider, M. Vasilchenko, A. Politov and V. Boldyrev, “The Mechanochemical Preparation of Solid Disperse Systems of Ibuprofen-Polyethylene Glycol,” International Journal of Pharmaceutics, Vol. 130, No. 1, 1996, pp. 25-32.

 
 
Top