AMPC  Vol.2 No.4 , December 2012
Yttria Promoted Nickel Nanowire Catalyst for the Partial Oxidation of Methane to Synthesis Gas
ABSTRACT
A yttria promoted nickel nanowire catalyst was prepared by a hard templating method, and characterized by transmission electron microscopy (TEM) and N2 physical adsorption. The catalytic properties of the yttria promoted nanowire catalyst in the partial oxidation of methane to syngas were compared with a metallic Ni catalyst which was prepared with nickel sponge. The characterization results showed that the yttria promoted nickel nanowire catalyst had high specific surface area and there was more NiO phase in the nickel nanowire catalyst than in the metallic Ni catalyst. The reaction results showed that the yttria promoted nickel nanowire catalyst had high CH4 conversion and selectivities to H2 and CO.

Cite this paper
X. Hong, B. Li and C. Zhang, "Yttria Promoted Nickel Nanowire Catalyst for the Partial Oxidation of Methane to Synthesis Gas," Advances in Materials Physics and Chemistry, Vol. 2 No. 4, 2012, pp. 212-215. doi: 10.4236/ampc.2012.24B054.
References
[1]   R.C. Ramaswamy, P.A. Ramachandran, M.P. Dudukovic, Ind. Eng. Chem. Res. 46, 8638 (2007).

[2]   C.J. Bell, C.A. Leclerc, Energy Fuels 21, 3548 (2007).

[3]   M. Fleys, W.J. Shan, Y. Simon, P.M. Marquaire, Ind. Eng. Chem. Res. 46, 1063 (2007).

[4]   C.W. Hu, J.J. Wu, H.L. Zhang, S. Qin, AIChE J. 53, 2925 (2007).

[5]   T.V. Choudhary, V.R. Choudhary, Angew. Chem. Int. Ed. 47, 2 (2008).

[6]   K.A. Williams, R. Horn, L.D. Schmidt, AIChE J. 53, 2097 (2007).

[7]   J.H. Ryu, K.Y. Lee, H.J. Kim, J.I. Yang, H. Jung, Appl. Catal., B: Environ. 80, 306 (2008).

[8]   U. Balachandran, J.T. Dusek, P.S. Maiya, B. Ma, R.L. Mieville, M.S. Kleefisch, C.A. Udovich, Catal. Today 36, 265 (1997).

[9]   V.R. Choudhary, A.M. Rajput, B. Prabhakar, J. Catal. 139, 326 (1993).

[10]   S.J. Feng, S. Ran, D.C. Zhu, W. Liu, C.S. Chen, Energy Fuels 18, 385 (2004).

[11]   V.R. Choudhary, K.C. Mondal, T.V. Choudhary, Catal. Commun. 8, 561 (2007).

[12]   T.F. Liu, C. Snyder, G. Veser, Ind. Eng. Chem. Res. 46, 9045 (2007).

[13]   Z.X. Wang, T. Dong, L.X. Yuan, T. Kan, X.F. Zhu, Y. Torimoto, M. Sadakata, Q.X. Li, Energy Fuels 21, 2421 (2007).

[14]   P. Mukoma, D. Hildebrandt, D. Glasser, N. Coville, Ind. Eng. Chem. Res. 46, 156 (2007).

[15]   A.B. Mhadeshwar, D.G. Vlachos, Ind. Eng. Chem. Res. 46, 5310 (2007).

[16]   S.F. Rice, A.H. McDaniel, E.S. Hecht, A.J.J. Hardy, Ind. Eng. Chem. Res. 46, 1114 (2007).

[17]   J.H. Ryu, K.Y. Lee, H. La, H.J. Kim, J. Yang, H. Jung: J. Power Sources, Available online 23 June 2007.

[18]   H.J. Wan, X.J. Li, S.F. Ji, B.Y. Huang, K. Wang, C.Y. Li, J. Nat. Gas Chem. 16, 139 (2007).

[19]   M. Rezaei, S.M. Alavi, S. Sahebdelfar, P. Bai, X.M. Liu, Z.F. Yan, Appl. Catal., B: Environ. 77, 346 (2008).

[20]   Y.Q. Song, D.H. He, B.Q. Xu, Appl. Catal., A: Gen. Available online 29 November 2007.

[21]   J.T. Hu, T.W. Odom, C.M. Lieber: Acc. Chem. Res., 32, 435 (1999).

[22]   A. Taguchi, F. Schuth: Micropor. Mesopor. Mater., 77, 1 (2005).

[23]   C.C. Wang, J.Y. Ying: Chem. Mater., 11, 3113 (1999).

[24]   P. Kim, Y.H. Kim, H.S. Kim, I.K. Song, J.H. Yi: Appl. Catal., A, 272, 157 (2004).

[25]   Y.H. Li, Y.Q. Wang, X.B. Hong, Z.G. Zhang, Z.P. Fang, Y. Pan, Y.B. Lu, Z.Q. Han: AIChE J., 52, 4276 (2006).

[26]   D.J. Mei, Y.Q. Chen, J.B. Zhong, Z.L. Wei, D. Ma, M.C. Gong: J. Rare Earth, 25, 311 (2007).

[27]   P.M. Torniainen, X. Chu, L.D. Schmidt: J. Catal., 146, 1 (1994).

[28]   F. Kleitz, S.H. Choi, R. Ryoo: Chem. Commun., 17, 2136 (2003).

[29]   T.W. Kim, F. Kleitz, B. Paul, R. Ryoo: J. Am. Chem. Soc., 127, 7601 (2005).

[30]   T.W. Kang, Y.G. Park, J.H. Yi: J. Mol. Catal. A, 244, 151 (2006).

[31]   M.K. Dongare, K. Malshe, C.S. Gopinath, I.K. Murwani, E. Kemnitz: J. Catal., 222, 80 (2004).

[32]   H. Mori, C.J. Wen, J. Otomo, K. Eguchi, H. Takahashi: Appl. Catal. A, 245, 79 (2003).

[33]   S. Eriksson, S. Rojas, M. Boutonnet, J.L.G. Fierro: Appl. Catal., A, 326, 8 (2007).

[34]   C.T. Au, M.S. Liao, C.F. Ng: J. Phys. Chem. A, 102, 3959 (1998).

[35]   Y. Boucouvalas, Z.L. Zhang, X.E. Verykios: Catal. Lett., 40, 189 (1996).

[36]   S. Rabe, T.B. Truong, F. Vogel: Appl. Catal. A, 318, 54 (2007).

[37]   L. Chen, Q. Hong, J. Lin, F.M. Dautzenberg: J. Power Sources, 164, 803 (2007).

[38]   A.S. Bodke, S.S. Bharadwaj, L.D. Schmidt: J. Catal., 179, 138 (1998).

[39]   D.A. Hickman, L.D. Schmidt: AIChE J., 39, 1164 (1993).

[40]   M. Labaki, S. Siffert, J.F. Lamonier, E.A. Zhilinskaya, A. Aboukais: Appl. Catal., B, 43, 261 (2003).

[41]   J.J. Zhu, S. Albertsma, J.G. van Ommen, L. Lefferts: J. Phys. Chem. B, 109, 9550 (2005).

[42]   Li, C. Y.; Shen, Y. N.; Jia, M. L.; Sheng, S. S.; Adebajo, M. O.; Zhu, H. Y. Catal. Commun. 9, 355 (2008).

[43]   Durme, J. V.; Dewulf, J.; Leys, C.; Langenhove, H. V. Appl. Catal., B: Environ. 74, 324 (2008).

[44]   W.X. Kuang, Y. Fan, Y. Chen: Langmuir, 16, 1440 (2000).

[45]   Z.X. Liu, Q.X. Bao, N.J. Wu: J. Catal., 113, 45 (1988).

[46]   Galvez, M. E.; Boyano, A.; Lazaro, M. J.; Moliner, R. Chem. Eng. J. Available online 12 January 2008.

[47]   Baylet, A.; Royer, S.; Marecot, P.; Tatibouet, J. M.; Duprez, D. Appl. Catal., B: Environ. 77, 237 (2008).

[48]   J.J. Zhu, J.G. van Ommen, H.J.M. Bouwmeester, L. Lefferts: J. Catal., 233, 434 (2005).

[49]   S. Ozkar, M. Zahmakiran: J. Alloys. Compd., 404, 728 (2005).

[50]   K.L. Hohna, L.D. Schmidt: Appl. Catal., A, 211, 53 (2001).

[51]   S. Whitaker: AIChE J., 18, 361 (1972).

 
 
Top