JMP  Vol.4 No.1 , January 2013
Seismic Signal and Data Analysis of Rock Media with Vertical Anisotropy
Abstract: This paper is concerned with anisotropic effects on seismic data and signal analysis for transversely isotropic rock media with vertical anisotropy. It is understood that these effects are significant in many practical applications, e.g. earthquake forecasting, materials exploration inside the Earth’s crust, as well as various practical works in oil industry. Under the framework of the most accepted anisotropic media model (i.e. VTI media, transverse isotropy with a vertical axis symmetry), with applications of a set of available anisotropic rock parameters for sandstone and shale, we have performed numerical calculations of the anisotropic effects. We show that for rocks with strong anisotropy, the induced relative depth error can be significantly large. Nevertheless, with an improved understanding of the seismic-signal propagation and proper data processing, the error can be reduced, which in turn may enhance the probability of forecasting accurately the various wave propagations inside the Earth’s crust, e.g. correctly forecasting the incoming earthquakes from the center of the Earth.
Cite this paper: Y. Zhao, N. Zhao, L. Fa and M. Zhao, "Seismic Signal and Data Analysis of Rock Media with Vertical Anisotropy," Journal of Modern Physics, Vol. 4 No. 1, 2013, pp. 11-18. doi: 10.4236/jmp.2013.41003.

[1]   E. Larose, J. Rosny, L. Margerin, D. Anache, P. Gouedard, M. Campillo and B. Tiggelen, “Observation of Multiple Scattering of kHz Vibrations in a Concrete Structure and Application to Monitoring Weak Changes,” Physical Review E, Vol. 73, No. 1, 2006, Article ID: 016609.

[2]   I. Tsvankin, “Seismic Signatures and Analysis of Reflection Data in Anisotropic Media,” Elsevier, Amsterdam, 2005.

[3]   L. Fa, R. L. Brown and J. P. Castagna, “Anomalous Postcritical Refraction Behavior for Certain Transversely Isotropic Media,” Journal of the Acoustical Society of America, Vol. 120, No. 6, 2006, pp. 3479-3492. doi:10.1121/1.2360419

[4]   L. Fa, J. P. Castagna and H. Dong, “An Accurately Fast Algorithm of Calculating Reflection/Transmission Coefficients,” Science in China Series G-Physics, Mechanics & Astronomy, Vol. 51, No. 7, 2008, pp. 823-846. doi:10.1007/s11433-008-0076-8

[5]   I. Tsvankin, “P-Wave Signatures and Notation for Transversely Isotropic Media: An Overview,” Geophysics, Vol. 61, No. 2, 1996, pp. 467-483. doi:10.1190/1.1443974

[6]   J. Wright, “The Effects of Transverse Isotropy on Reflection Amplitude versus Offset,” Geophysics, Vol. 52, No. 4, 1987, pp. 564-567. doi:10.1190/1.1442325

[7]   K. Y. Kim, K. H. Wrolstad and F. Aminzadeh, “Effects of Transverse Isotropy on P-Wave AVO for Gas Sands,” Geophysics, Vol. 58, No. 6, 1993, pp. 883-888. doi:10.1190/1.1443472

[8]   A. Rüger, “P-Wave Reflection Coefficients for Transversely Isotropic Models with Vertical and Horizontal Axis of Symmetry,” Geophysics, Vol. 62, No. 3, 997, pp. 713-722.

[9]   Z. J. Wang, “Seismic Anisotropy in Sedimentary Rocks, part 2: Laboratory Data,” Geophysics, Vol. 67, No. 5, 2002, pp. 1423-1440. doi:10.1190/1.1512743

[10]   M. S. Sams, M. H. Worthington and M. S. Khanshir, “A Comparison of Laboratory and Field Measurements of P-Wave Anisotropy,” Geophysical Prospecting, Vol. 41, No. 2, 1993, pp. 189-206. doi:10.1111/j.1365-2478.1993.tb00865.x

[11]   Y. G. Vladimir and A. M. George, “3-D Two-Point Ray Tracing for Heterogeneous, Weakly Transversely Isotropic Media,” Geophysics, Vol. 61, No. 6, 1996, pp. 1883-1895. doi:10.1190/1.1444103

[12]   N. C. Banik, “An Effective Anisotropy Parameter in Transversely Isotropic Media,” Geophysics, Vol. 52, No. 12, 1987, pp. 1654-1664.

[13]   I. Lerche, “Acoustic Head-Wave Arrival Times in Anisotropic Media,” Journal of the Acoustical Society of America, Vol. 82, No. 1, 1987, pp. 319-323. doi:10.1121/1.395569

[14]   N. L. Bangs, “Seismic Imaging of Subduction Zone Deformational Structures Using 3D Seismic Profiling,” Journal of the Acoustical Society of America, Vol. 120, No. 5, 2006, p. 3027.

[15]   T. Alkhalifah, F. Sergey and B. Biondi, “The Space-Time Domain: Theory and Modelling for Anisotropic Media,” Geophysical Journal International, Vol. 144, No. 1, 2001, pp. 105-113. doi:10.1046/j.1365-246x.2001.00300.x

[16]   T. Alkhalifah and I. Tsvankin, “Velocity Analysis for Transversely Isotropic Media,” Geophysics, Vol. 60, No. 5, 1995, pp. 1550-1566. doi:10.1190/1.1443888

[17]   A. Rüger, “Reflection Coefficients and Azimuthal AVO Analysis in Anisotropy Media, Geophysical Monograph Series,” The International Society of Applied Physics, Tulsa, 2002. doi:10.1190/1.9781560801764

[18]   I. Tsvankin and L. Thomsen, “Inversion of Reflection Traveltimes for Transverse Isotropy,” Geophysics, Vol. 60, No. 4, 1995, pp. 1095-1107. doi:10.1190/1.1443838

[19]   K. L. Larner, “Migration Error in Transversely Isotropic Media with Linear Velocity Variation in Depth,” Geophysics, Vol. 58, No. 10, 1993, pp. 1454-1467. doi:10.1190/1.1443360

[20]   J. M. Carcione, “Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic and Porous Media, Pergamon,” Elsevier Science, Amsterdam, 2001.

[21]   B. A. Auld, “Acoustic Fields and Waves in Solids,” Wiley, New York, 1973.

[22]   L. Thomsen, “Weak Elastic Anisotropy,” Geophysics, Vol. 51, No. 10, 1986, pp. 1954-966. doi:10.1190/1.1442051

[23]   L. Fa, J. P. Castagna, Z. W. Zeng, R. L. Brown and M. Zhao, “Effects of Anisotropy on Time-Depth Relation in Transversely Isotropic Medium with a Vertical Axis of Symmetry,” Chinese Science Bulletin, Vol. 55, No. 21, 2010, pp. 2243-2251. doi:10.1007/s11434-010-3186-4

[24]   Lecture notes on Anisotropic Wave Propagation, (Author Unknown).