[1] NSERC, Discovery Grants Information Centre. Natural Sciences and Engineering Research Council of Canada, 2011.
[2] “论语: The Analects of Confucius”.
[3] Holtz R.D., and Kovacs, W.D. An Introduction to Geotechnical Engineering, Prentice-Hall Inc., 1981, translated into French by J. Lafleur and printed in 2008, Presses Internationales Polytechnique.
[4] ASTM, “Designation: D 5084–03; Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter”, ASTM International, 2003.
[5] Li, L., Aubertin, M., Belem, T., “Formulation of a three dimensional analytical solution to evaluate stress in backfilled vertical narrow openings”, Can. Geotech. J., Vol. 42, No. 6, 2005, pp. 1705-1717.
[6] Li, L., Aubertin, M., “An improved analytical solution to estimate the stress state in sub-vertical backfilled stopes”, Can. Geotech. J., Vol. 45, No. 10, 2008, pp. 1487-1496.
[7] Li, L., Aubertin, M., “A numerical investigation of the stress state in inclined backfilled stopes”, ASCE Int. J. Geomech., Vol. 9, No. 2, 2009, pp. 52-62.
[8] Li, L., Aubertin, M., “An analytical solution for the nonlinear distribution of effective and total stresses in vertical backfilled stopes”, Geomech. Geoeng., Vol. 5, No. 4, 2010, pp. 237-245.
[9] Li, L., Aubertin, M., “Limit equilibrium analysis for the design of backfilled stope barricades made of waste rock”, Can. Geotech. J., Vol. 48, No. 11, 2011, pp. 1713-1728.
[10] El Mkadmi, N., Aubertin, M., Li, L., “The effect of transient drainage on the stress state in backfilled mine stopes”, Proceedings of Pan-Am CGS Geotechnical Conference, University of Toronto, 2011, Paper No. 1139.
[11] El Mkadmi, N., Aubertin M., Li, L., “Numerical analysis of the early response of paste backfill in a vertical stope”, Mines without borders, CIM, 2011, pp. 68-78.
[12] Fahey, M., Helinski, M., Fourie, A., “Consolidation in accreting sediments: Gibson’s solution applied to backfilling of mine stopes”, Géotech., Vol. 60, No. 11, 2010, pp.877-882.
[13] Helinski, M., Fahey, M., Fourie, A., “Numerical Modeling of cemented mine backfill deposition”, J. Geotech. Geoenv. Eng., Vol. 133, No. 10, 2007, pp. 1308–1319.
[14] Singh, S., Sivakugan, N., “Time dependant settlements in hydraulic fills”, Int. J. Geotech. Eng., Vol. 2, 2008, pp. 293-302.
[15] Imai, G., “Development of a new consolidation test procedure using seepage force”, Soils and Foundations, Vol. 19, No. 3, 1979, pp. 45-60.
[16] Imai, G. “Experimental studies on sedimentation mechanism and sediment formation of clay materials”, Soils and Foundations,Vol. 21, No. 1, 1981, pp. 7-20.
[17] Berilgen, S.A., Berilgen, M.M., Ozaydin, I.K., "Compression and permeability relationships in high water content clays", Applied Clay Science, Vol. 31, No. 3-4, 2006, pp. 249-261.
[18] Carrier III, W.D., Bromwell, L.C., Somogyi, F., “Design capacity of slurried mineral waste ponds”, J. Geotech. Eng., Vol. 109, No. 5, 1983, pp. 699-716.
[19] Vick, S.G. Planning, Design and Analysis of Tailings Dams, New York: John Wiley & Sons, 1983.
[20] Aubertin, M., Bussiere, B., Chapuis, R.P., “Hydraulic conductivity of homogenized tailings from hard rock mines”, Can. Geotech. J., Vol. 33, 1996, pp. 470-482.
[21] Bussière, B. “Colloquium 2004: Hydro-geotechnical properties of hard rock tailings from metal mines and emerging geo-environmental disposal approaches”, Can. Geotech. J., Vol. 44, No. 9, 2007, pp. 1019–1052.
[22] Wickland, B.E., Wilson, G.W., “Self-weight consolidation of mixtures of mine waste rock and tailings”, Can. Geotech. J., Vol. 42, 2005, pp. 327-339.
[23] Wickland, B.E., Wilson, G.W., Wijewickreme, D., “Hydraulic conductivty and consolidation response of mixtures of mine waste rock and tailings”, Can. Geotech. J., Vol. 47, 2010, pp. 472-485.
[24] Ou, X., Yang, J., Yin, X., Liao, Y., “Experimental study on mechanism for self-weight consolidation of the red mud tailings placed in the karsts”, Appl. Mech. Mater., Vol. 90-93, 2011, pp. 3102-3107.
[25] Madhyannapu, R.S., Madhav, M.R., Puppala, A.J., Ghosh, A., “Compressibility and collapsibility characteristics of sedimented fly ash beds”, J. Mater. Civ. Eng., Vol. 20, No. 6, 2008, pp. 401–409.
[26] Li, L., Alvarez, I.C., Aubertin, J.D., “Evolution of physical and hydraulic properties of a slurried deposition due to self-weight consolidation: Experiments and interpretation”, Int. J. Geotech. Eng., (accepted, July 2012).