OJAppS  Vol.2 No.4 B , December 2012
Interval Integration Revisited
Author(s) Sérgio Galdino*
ABSTRACT
We present an overview of approaches to selfvalidating one-dimensional integration quadrature formulas and a verified numerical integration algorithm with an adaptive strategy. The new interval integration adaptive algorithm delivers a desired integral enclosure with an error bounded by a specified error bound. The adaptive technique is usually much more efficient than Simpson’s rule and narrow interval results can be reached.

Cite this paper
nullGaldino, S. (2012) Interval Integration Revisited. Open Journal of Applied Sciences, 2, 108-111. doi: 10.4236/ojapps.2012.24B026.
References
[1]   G. F. Corliss and L. B. Rall: Adaptive, self-validating numerical quadrature. SIAM J. Sci. Statist. Comput. 8(5):831–47,(1985)

[2]   R. Kelch. Ein adaptives Verfahren zur numerischen Quadratur mit automatischer Ergebnisverifikation. PhD thesis, Universit?t Karlsruhe,(1989).

[3]   U. Storck. Numerical integration in two dimensions with automatic result verification. In E. Adams and U. Kulisch, editors, Scientific Computing with Automatic Result Verification,Academic Press, New York, etc., 187–224, (1993).

[4]   J. C. Burkill: Functions of intervals. Proceedings of the London Mathematical Society, 22:375-446, (1924)

[5]   R. C. Young: The algebra of many-valued quantities. Math. Ann. 104:260-290, (1931)

[6]   T . Sunaga: Theory of an Interval Algebra an d its Application to Numerical Analysis. Gaukutsu Bunken Fukeyu-kai, Tokyo, (1958)

[7]   R. E. Moore: Interval Arithmetic and Automatic Error Analysis in Digital Computing. PhD thesis, Stanford University, October, (1962).

[8]   R.E. Moore: Interval Analysis. Prentice Hall, Englewood Clifs, NJ, USA,(1966)

[9]   G.F. Kuncir: Algorithm 103: Simpson’s rule integrator. Communications of the ACM 5(6): 347, (1962)

[10]   J.N. Lyness: Notes on the adaptive Simpson quadrature routine. Journal of the ACM 16 (3): 483–495, (1969)

[11]   P. Gonnet: Adaptive quadrature re-revisited. ETH Zürich Thesis Nr.18347 (2009).http://dx.doi.org/10.3929/ethz-a-005861903

[12]   S.M. Rump: INTLAB - INTerval LABoratory. Tibor Csendes, Developments in Reliable Computing, Kluwer Academic Publishers, Dordrecht, 77–104, (1999), http://www.ti3.tu-harburg.de/rump/

[13]   Douglas N. Arnold: A Concise Introduction to Numerical Analysis. Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, MN 55455 (2001). http://www.ima.umn.edu/~arnold/

 
 
Top