[1] T. Abualrub and R. Oehmke, “Cyclic codes of length over Z4” Discrete Applied Mathematics 128 (2003) 3 – 9.
[2] A.R. Calderbank, N.J.A. Sloane, Modular and p-adic cyclic codes, Designs Codes Cryptogr. 6 (1995) 21–35.
[3] P. Kanwar, S.R. Lopez-Permouth, Cyclic codes over the integers modulo p, Finite Fields Appl. 3 (4) (1997) 334–1352.
[4] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, Ninth impression, North-Holland, Amsterdam, 1977.
[5] T. Blackford, Cyclic codes over Z4 of oddly even length, Discrete Applied Mathematics, Vol. 128 (2003) pp. 27–46.
[6] Steven T. Dougherty, San Ling, Cyclic Codes Over Z4 of Even Length, Designs, Codes and Cryptography, vol 39, pp 127–153, 2006
[7] Shi Minjia, Zhu Shixin. Cyclic Codes Over The Ring ZP2 Of Length pe. Journal Of Electronics (China), vol 25, no 5,(2008), 636-640.
[8] I.S.Luthar, I.B.S.Passi. Algebra volume 2 Rings, Narosa Publishing House, first edition,2002.