ENG  Vol.5 No.1 , January 2013
Degradation Behaviors of Thai Bombyx mori Silk Fibroins Exposure to Protease Enzymes
Abstract: The degradation behaviors of Thai Bombyx mori called Samrong and Nanglai silk fibroins exposure to protease enzymes; protease XIV, protease XXIII and α-chymotrypsin type II were studied in this work. The degradation behaviors were expressed by their weight loss, morphological and secondary structure changes as well as thermal properties. Samrong showed higher percentage of weight loss than Nanglai. SEM micrographs indicated that silk fibroin were de- stroyed and showed many holes on their fiber surfaces. All of silk samples were increasable destroyed when exposure to the protease enzyme for long incubation period. With thermal analysis, both silk fibroin presented the thermal stability in the same profile. The result suggested that the selected silk fibroin should be composed of similar pattern of amino acids and their ratios. However, the protease susceptibility of each silk fibroin slightly varied in case of morphology observation. This might be affected by their genetic variety.
Cite this paper: C. Wongnarat and P. Srihanam, "Degradation Behaviors of Thai Bombyx mori Silk Fibroins Exposure to Protease Enzymes," Engineering, Vol. 5 No. 1, 2013, pp. 61-66. doi: 10.4236/eng.2013.51010.

[1]   D. N. Bikiaris, G. Z. Papageorgiou, D. S. Achilias, E. Pavlidou and A. Stergiou, “Miscibility and Enzymaticdegradation Studies of Poly(epsilon-caprolactone)/Poly(propylene succinate) Blends,” European Polymer Journal, Vol. 43, No. 6, 2007, pp. 2491-2503. doi:10.1016/j.eurpolymj.2007.03.051

[2]   Z. Liu, Y. Jiao, Y. Wang, C. Zhou and Z. Zhang, “Polysaccharides-Based Nanoparticles as Drug Delivery Systems,” Advanced Drug Delivery Reviews, Vol. 60, No. 15, 2008, pp. 1650-1662. doi:10.1016/j.addr.2008.09.001

[3]   Y. Cao and B. Wang, “Biodegradation of Silk Biomaterials,” International Journal of Molecular Sciences, Vol. 10, No. 4, 2009, pp. 1514-1524. doi:10.3390/ijms10041514

[4]   L. Dürselen, M. Dauner, H. Hierlemann, H. Planck, L. E. Claes and A. Ignatius, “Resorbable Polymer Fibers for Ligament Augmentation,” Journal of Biomedical Materials Research, Vol. 58, No. 6, 2001, pp. 666-672.

[5]   L. Lu, S. J. Peter, M. D. Lyman, H. L. Lai, S. M. Leite, J. A. Tamada, S. Uyama, J. P. Vacanti, R. Langer and A. G. Mikos, “In Vitro and in Vivo Degradation of Porous Poly(DL-lactic-co-glycolic acid) Foams,” Biomaterials, Vol. 21, No. 18, 2000, pp. 1837-1845. doi:10.1016/S0142-9612(00)00047-8

[6]   G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. H. Lu, J. Richmond and D. L. Kaplan, “Silk-Based Biomaterials,” Biomaterials, Vol. 24, No. 3, 2003, pp. 401-416.

[7]   S. Q. Yan, C. X. Zhao, X. F. Wu, Q. Zhang and M. Z. Li, “Gelation Behavior of Antheraea pernyi Silk Fibroin,” Science China Chemistry, Vol. 53, No. 3, 2009, pp. 535541. doi:10.1007/s11426-010-0093-0

[8]   M. Z. Li, Z. Y. Wu, C. S. Zhang, S. Z. Lu, H. J. Yan, D. Huang and H. L. Ye, “Study on Porous Silk Fibroin Materials. II. Preparation and Characteristics of Spongy Porous Silk Fibroin Materials,” Journal of Applied Polymer Science, Vol. 79, No. 12, 2001, pp. 2192-2199.

[9]   C. Vepari and D. L. Kaplan, “Silk as a Biomaterial,” Progress in Polymer Science, Vol. 32, No. 8-9, 2007, pp. 991-1007. doi:10.1016/j.progpolymsci.2007.05.013

[10]   J. Kundu, M. Dewan, S. Ghoshal and S. C. Kundu, “Mulberry Non-Engineered Silk Gland Protein vis-à-vis Silk Cocoon Protein Engineered by Silkworms as Biomaterial Matrices,” Journal of Materials Science Materials in Medicine, Vol. 19, No. 7, 2008, pp. 2679-2689. doi:10.1007/s10856-008-3398-1

[11]   R. L. Horan, K. Antle, A. L. Collette, Y. Z. Huang, J. Huang, J. E. Moreau, V. Volloch, D. L. Kaplan and G. H. Altman, “In Vitro Degradation of Silk Fibroin,” Biomaterials, Vol. 26, No. 17, 2005, pp. 3385-3393. doi:10.1016/j.biomaterials.2004.09.020

[12]   T. Arai, G. Freddi, R. Innocenti and M. Tsukada, “Biodegradation of Bombyx mori Silk Fibroin Fibers and Films,” Journal of Applied Polymer Science, Vol. 91, No. 4, 2004, pp. 2383-2390. doi:10.1002/app.13393

[13]   P. Taddei, T. Arai, A. Boschi, P. Monti, M. Tsukada and G. Freddi, “In Vitro Study of the Proteolytic Degradation of Antheraea pernyi Silk Fibroin,” Biomacromolecules, Vol. 7, No. 1, 2006, pp. 259-267. doi:10.1021/bm0506290

[14]   Z. She, B. Zhang, C. Jin, Q. Feng and Y. Xu, “Preparation and in Vitro Degradation of Porous Three-Dimensional Silk Fibroin/Chitosan Scaffold,” Polymer Degradation and Stability, Vol. 93, No. 7, 2008, pp. 1316-1322. doi:10.1016/j.polymdegradstab.2008.04.001

[15]   M. Tsukada, G. Freddi, M. Nagura, H. Ishikawa and N. Kasai, “Structural Changes of Silk Fibers Induced by Heat Treatment,” Journal of Applied Polymer Science, Vol. 46, No. 11, 1992, pp. 1945-1953. doi:10.1002/app.1992.070461107

[16]   H. Y. Kweon, J. H. Yeo, K. G. Lee, H. C. Lee, H. S. Na, Y. H. Won and C. H. Cho, “Semi Interpenetrating Polymer Networks Composed of Silk Fibroin and Poly(ethylene glycol) for Wound Dressing,” Biomedical Materials, Vol. 3, No. 3, 2008, pp. 1-5. doi:10.1088/1748-6041/3/3/034115

[17]   J. Zhou, C. Cao, X. Ma, L. Hu, L. Chen and C. Wang, “In Vitro and in Vivo Degradation Behavior of Aqueous-Derived Electrospun Silk Fibroin Scaffolds,” Polymer Degradation and Stability, Vol. 95, No. 9, 2010, pp. 16791685. doi:10.1016/j.polymdegradstab.2010.05.025

[18]   K. Numata, P. Cebe and D. L. Kaplan, “Mechanism of Enzymatic Degradation of Beta-Sheet Crystals,” Biomaterials, Vol. 31, No. 10, 2010, pp. 2926-2933. doi:10.1016/j.biomaterials.2009.12.026