The integral equations of Compton Scatter Tomography

Show more

References

[1] Ta. Li, “A new class of integral transforms,” Proc. Amer. Math. Soc., vol. 11, pp. 290–298, 1960.

[2] R.G. Buschman, “Integrals of hypergeometric functions,” Math. Zeitschr. vol 89, pp. 74-76, 1965.

[3] J. Radon, “über die Bestimmung von Funktionnen durch ihre Integralwerte l?ngst gewisser Mannigfaltigkeiten,” Ber.Verh.Sachs.Akad.Wiss. Leipzig-Math.-Natur.Kl. vol. 69, pp. 262-277, 1917.

[4] M. K. Nguyen and T. T. Truong, “Inversion of a new circular arc Radon transform for Compton scattering tomography,” Inverse Problems vol. 26, pp. 065005, 2010.

[5] T. T. Truong and M. K. Nguyen, “Radon transforms on generalized Cormack’s curves and a new Compton scatter tomography modality,” Inverse Problems, vol. 27, pp. 125001, 2011.

[6] A. M. Cormack, “The Radon transform on a family of curves in the plane ,” Proc. Amer. Math. Soc., vol. 83, pp. 325-330, October 1981.

[7] A. M. Cormack, “Radon’s problem – Old and new”, SIAM Proceedings, vol. 14, pp. 33-39, 1984.

[8] S. J; Norton, “Compton scattering tomography,” J. Appl. Phys., vol. 70, pp. 2007-2015, 1994.

[9] C. H. Chapman and P. W. Carey, “The circular harmonic Radon transform,” Inverse Problems, vol. 2, pp. 23-79, 1986.

[10] M. K. Nguyen, C. Faye, G. Rigaud and T. T. Truong, “A novel technological imaging process using ionizing radiation properties,” Proceedings of the 9th IEEE - RVIF International Conference on Computing and Communications Technologies (RIVF 12), Ho-chi-Minh City, Vietnam, February 2012.