Unification and Application of 3-point Approximating Subdivision Schemes of Varying Arity

Show more

References

[1] M. Aslam, G. Mustafa, and A. Ghaffar, “(2n?1)-point ternary approximating and interpolatingsubdivision schemes,” Journal of Applied Mathematics, Article ID 832630, 12 pages,2011.

[2] G. M. Chaikin, “An algorithm for high-speed curve generation, Computer Graphics andImage Processing,”vol. 3, 1974, pp. 346-349.

[3] S. Daniel and P. Shunmugaraj, “Three point stationary and non-stationary subdivisionschemes,” 3rd International Conference on Geometric Modeling & Imaging,DOI:10.1109/GMAI.2008.13

[4] M. F. Hassan and N. A. Dodgson, “Ternary and three-point univariate subdivision schemes,” in:A. Cohen, J. L. Marrien, L. L. Schumaker (Eds.), Curve and Surface Fitting: Sant-Malo2002, Nashboro Press, Brentwood, pp. 199-208, 2003.

[5] M. F. Hassan, I. P.Ivrissimitzis, N. A. Dodgson,and M. A. Sabin, “An interpolating4-point ternary stationary subdivision scheme,” Computer Aided Geometric Design,vol. 19, pp.1-18, 2002.

[6] K. Hormann and M. A. Sabin, “A family of subdivision schemes with cubic precision,” ComputerAided Geometric Design, vol.25, 2008,pp. 41-52.

[7] F. Khan, G. Mustafa, “A new 4-point quaternary approximating subdivision scheme,”Abstractand Applied Analysis, doi:10.1155/2009/301967 (2009).

[8] J.-A. Lian, “On a-ary subdivision for curve design: III. 2m-point and (2m + 1)-point interpolatoryschemes,” Applications and Applied Mathematics: An International Journal, vol. 4(2),2009, pp. 434-444.

[9] J.-A. Lian, “On a-ary subdivision for curve design: I. 4-point and 6-point interpolatoryschemes,” Applications and Applied Mathematics: An International Journal, vol. 3(1), 2008, pp.18-29.

[10] J.-A. Lian, “On a-ary subdivision for curve design: II. 3-point and 5-point interpolatoryschemes,” Applications and Applied Mathematics: An International Journal, vol. 3(2), 2008, pp. 176-187.

[11] G. Mustafa, F. Khan and A. Ghaffar, The m-point approximating subdivision scheme,Lobachevskii Journal of Mathematics, vol. 30(2), 2009, pp. 138-145.

[12] G. Mustafa, A. Ghaffar and F. Khan, “The Odd-Point Ternary Approximating Schemes,”American Journal of Computational Mathematics, vol. 1(2), pp. 111-118, 2011. doi: 10.4236/ajcm.2011.12011

[13] G. Mustafa & M. S. Hashmi, Subdivision depth computation for n-ary subdivisioncurves/surfaces, Vis Comput, vol. 26, , 2010, pp. 841-851.

[14] S. S. Siddiqi and N. Ahmad, A new three point approximating C2 subdivision scheme,Applied Mathematics Letters, vol. 20, 2007, pp. 707-711.

[15] S. S. Siddiqi and Rehan, K, Modified form of binary and ternary 3-point subdivisionscheme, Applied Mathematics and Computation, vol. 216, 2010, pp. 970-982.