Counting Runs of Ones and Ones in Runs of Ones in Binary Strings

Show more

References

[1] ones in binary strings,” Comput. Math. Appl., vol. 58, pp. 1816-1829, 2009.

[2] K. Sinha and B. P. Sinha, “Energy-efficient communication: understanding the distribution of runs in binary strings,” 1st International Conference on Recent Advances in Information Technology (RAIT-2012), pp. 177-181, 2012.

[3] G. Benson, “Tandem repeats finder: a program to analyze DNA sequences,” Nucleic Acids Res., vol. 27, pp. 573-580, 1999.

[4] W.Y. W. Lou, “The exact distribution of the “-tuple statistic for sequence homoloy,” Statist. Probab. Lett., vol. 61, pp. 51-59, 2003.

[5] G. Nuel, L. Regad, J. Martin and A.C. Camproux, “Exact distribution of a pattern in a set of random sequences generated by a Markov source: applications to biological data,” Alg. Mol. Biol., vol. 5, pp. 1-18, 2010.

[6] N. Balakrishnan and M. V. Koutras, Runs and Scans with Applications, New York: Wiley, 2002.

[7] J. C. Fu and W. Y. W. Lou, Distribution Theory of Runs and Patterns and its Applications: A Finite Markov Imbedding Approach, New Jersey: World Scientific, 2003.

[8] M. V. Koutras, “Applications of Markov chains to the distribution theory of runs and patterns,” in Handbook of Statistics, vol. 21, D. N. Shanbhag, C. R. Rao, Eds. North Holland: Elsevier, 2003, pp. 431-472.

[9] S. Eryilmaz, “Success runs in a sequence of exchangeable binary trials,” J. Statist. Plann. Inference, vol. 137, pp. 2954-2963, 2007.

[10] F. S. Makri, A.N. Philippou and Z. M. Psillakis, “Polya, inverse Polya, and circular Polya distributions of order for -overlapping success runs,” Commun. Statist. Theory Methods, vol. 36, pp. 657-668, 2007.

[11] F. S. Makri, A. N. Philippou and Z. M. Psillakis, “Success run statistics defined on an urn model,” Adv. Appl. Probab., vol. 39, pp. 991-1019, 2007.

[12] S. Eryilmaz, “Run statistics defined on the multicolor urn model,” J. Appl. Probab., vol. 45, pp. 1007-1023, 2008.

[13] S. Demir and S. Eryilmaz, “Run statistics in a sequence of arbitrarily dependent binary trials,” Stat. Papers, vol. 51, pp. 959-973, 2010.

[14] K. Inoue and S. Aki, “On the conditional and unconditional distributions of the number of success runs on a circle with applications,” Statist. Probab. Lett., vol. 80, pp. 874-885, 2010.

[15] F. S. Makri, “On occurences of strings in linearly and circularly ordered binary sequences,” J. Appl. Probab., vol. 47, pp. 157-178, 2010.

[16] F. S. Makri, “Minimum and maximum distances between failures in binary sequences,” Statist. Probab. Lett., vol. 81, pp. 402-410, 2011.

[17] F. S. Makri and Z. M. Psillakis, “On runs of length exceeding a threshold: normal approximation,” Stat. Papers, vol. 52, pp. 531-551, 2011.

[18] F. S. Makri and Z. M. Psillakis, “On success runs of length exceeded a threshold,” Methodol. Comput. Appl. Probab., vol. 13, pp. 269-305, 2011.

[19] F. S. Makri and Z. M. Psillakis, “On success runs of a fixed length in Bernoull sequences: exact and aymptotic results,” Comput. Math. Appl., vol. 61, pp. 761-772, 2011.

[20] S. D. Dafnis, A. N. Philippou and D. L. Anztoulakos, “Distributions of patterns of two successes separeted by a string of failures,” Stat. Papers, vol. 53, pp. 323-344, 2012.

[21] M. V. Koutras and F. S. Milienos, “Exact and asymptotic results for pattern waiting times,” J. Statist. Plann. Inference, vol. 142, pp. 1464-1479, 2012.

[22] F. S. Makri and Z. M. Psillakis, “Counting certain binary strings,” J. Statist. Plann. Inference, vol. 142, pp. 908-924, 2012.

[23] A. M. Mood, “The distribution theory of runs,” Ann. Math. Stat., vol. 11, pp. 367-392, 1940.

[24] J. C. Fu and M. V. Koutras, “Distribution theory of runs: a Markov chain approach,” J. Amer. Statist. Assoc., vol. 89, pp. 1050-1058, 1994.

[25] D. L. Antzoulakos, “On waiting time problems associated with runs in Markov dependent trials,” Ann. Inst. Statist. Math., vol. 51, pp. 323-330, 1999.

[26] Q. Han and S. Aki, “Joint distributions of runs in a sequence of multi-trials,” Ann. Inst. Statist. Math., vol. 51, pp. 419-447, 1999.

[27] J. C. Fu, W. Y. W. Lou, Z. Bai and G. Li, “The exact and limiting distributions for the number of successes in success runs within a sequence of Markov-dependent two-state trials,” Ann. Inst. Statist. Math., vol. 54, pp. 719-730, 2002.

[28] K. Sen, M. L. Agarwal and S. Chakraborty, “Lenths of runs and waiting time distributions by using Polya-Eggenberger sampling scheme,” Studia Sci. Math. Hungar., vol. 2, pp. 309-332, 2002.

[29] D. L. Antzoulakos, S. Bersimis and M. V. Koutras, “On the distribution of the total number of run lengths,” Ann. Inst. Statist. Math., vol. 55, pp. 865-884, 2003.

[30] D. E. Martin, “Distribution of the number of successes in success runs of length at least in higher-order Markovian sequences,” Methodol. Comput. Appl. Probab., vol. 7, pp. 543-554, 2005.

[31] K. Sinha, Location and communication issues in mobile networks. Ph. D. Dissertaion, Department of Computer Science and Engineering, Jadavpur University, Calcutta, India , 2007.