[1] IPCC, “Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change,” In: S. Solomon, et al., Eds., Climate Change 2007: The Physical Science Basis, Cambridge University Press, Cambridge, 2007, p. 996.
[2] I. Dincer, “Environmental Impacts of Energy,” Energy Police, Vol. 27, No. 14, 1999, pp. 845-854. doi: 10.1016/j.bbr.2011.03.031
[3] M. Ishida, D. Zheng and T. Akehata, “Evaluation of a Chemical-Looping-Combustion Power-Generation System by Graphic Exergy Analysis,” Energy, Vol. 12, No. 2, 1987, pp. 147-154. doi:10.1016/0360-5442(87)90119-8
[4] J. Adanez and L. F. de Diego, “Selection of Oxygen Carriers for Chemical-Looping Combustion,” Energy & Fuels, Vol. 18, No. 3, 2004, pp. 371-377. doi: 10.1021/ef0301452
[5] P. Gayan, L. Dediego, F. Garcialabiano, J. Adanez, A. Abad and C. Dueso, “Effect of Support on Reactivity and Selectivity of Ni-Based Oxygen Carriers for Chemical-Looping Combustion,” Fuel, Vol. 87, No. 12, 2008, pp. 2641-2650. doi:10.1016/j.fuel.2008.02.016
[6] K. Sedor, M. Hossain and H. Delasa, “Reactivity and Stability of Ni/Al2O3 Oxygen Carrier for Chemical-Looping Combustion (CLC),” Chemical Engineering Science, Vol. 63, No. 11, 2008, pp. 2994-3007. doi:10.1016/j.ces.2008.02.021.
[7] M. Johansson, T. Mattisson and A. Lyngfelt, “Investigation of Fe2O3 with MgAl2O4 for Chemical-Looping Combustion,” Industrial & Engineering Chemistry Research, Vol. 43, No. 22, 2004, pp. 6978-6987. doi:10.1021/ie049813c
[8] H.-B. Zhao, L.-M. Liu, D. Xu, C.-G. Zheng, G.-J. Liu and L.-L. Jiang, “NiO/NiAl2O4 Oxygen Carriers Prepared by Sol-Gel for Chemical-Looping Combustion Fueled by Gas,” Fuel, Vol. 36, No. 3, 2008, pp. 261-266. doi:10.1016/S1872-5813(08)60020-1
[9] M. Johansson, T. Mattisson and A. Lyngfelt, “Creating a Synergy Effect by Using Mixed Oxides of Iron- and Nickel Oxides in the Combustion of Methane in a Chemical-Looping Combustion Reactor,” Energy, Vol. 56, No. 4, 2006, pp. 2399-2407. doi:10.1021/ef060068l
[10] M. Rydén, A. Lyngfelt, T. Mattisson, D. Chen, A. Holmen and E. Bjorgum, “Novel Oxygen-Carrier Materials for Chemical-Looping Combustion and Chemical-Looping Reforming; LaxSr1-xFeyCo1-yO3-δ Perovskites and Mixed-Metal Oxides of NiO, Fe2O3 and Mn3O4,” International Journal of Greenhouse Gas Control, Vol. 2, No. 1, 2008, pp. 21-36. doi:10.1016/S1750-5836(07)00107-7
[11] E. Jerndal, T. Mattisson and A. Lyngfelt, “Investigation of Different NiO/NiAl2O4 Particles as Oxygen Carriers for Chemical-Looping Combustion,” Energy, Vol. 94, No. 10, 2009, pp. 665-676. doi:10.1021/ef8006596
[12] A. Abad, J. Adanez, F. Garcialabiano, L. Dediego, P. Gayan and J. Celaya, “Mapping of the Range of Operational Conditions for Cu-, Fe-, and Ni-Based Oxygen Carriers in Chemical-Looping Combustion,” Chemical Engineering Science, Vol. 62, No. 1-2, 2007, pp. 533-549. doi:10.1016/j.ces.2006.09.019
[13] E. Jerndal, T. Mattisson and A. Lyngfelt, “Thermal Analysis of Chemical-Looping Combustion,” Chemical Engineering Research and Design, Vol. 84, No. 9, 2006, pp. 795-806. doi:10.1205/cherd05020
[14] H. Leion, A. Lyngfelt, M. Johansson, E. Jerndal and T. Mattisson, “The Use of Ilmenite as an Oxygen Carrier in Chemical-Looping Combustion,” Chemical Engineering Research and Design, Vol. 86, No. 9, 2008, pp. 1017-1026. doi:10.1016/j.cherd.2008.03.019
[15] H. Leion, T. Mattisson and A. Lyngfelt, “Use of Ores and Industrial Products as Oxygen Carriers in Chemical-Looping Combustion,” Energy & Fuels, Vol. 23, No. 4, 2009, pp. 2307-2315. doi:10.1021/ef8008629
[16] J. Adanez, A. Cuadrat, A. Abad, P. Gayan, L. F. de Diego and F. Garcia-Labiano, “Ilmenite Activation during Consecutive Redox Cycles in Chemical-Looping Combustion,” Energy & Fuels, Vol. 24, No. 2, 2010, pp. 1402-1413. doi:10.1021/ef900856d
[17] A. R. Bidwe, F. Mayer, C. Hawthorne, A. Charitos, A. Schuster and G. Scheffknecht, “Use of Ilmenite as an Oxygen Carrier in Chemical Looping Combustion-Batch and Continuous Dual Fluidized Bed Investigation,” Energy Procedia, Vol. 4, 2011, pp. 433-440. doi:10.1016/j.egypro.2011.01.072
[18] M. M. Azis, E. Jerndal, H. Leion, T. Mattisson and A. Lyngfelt, “On the Evaluation of Synthetic and Natural Ilmenite Using Syngas as Fuel in Chemical-Looping Combustion (CLC),” Chemical Engineering Research and Design, Vol. 88, No. 11, 2010, pp. 1505-1514. doi:10.1016/j.cherd.2010.03.006
[19] J. Nell, “An Overview of the Phase-Chemistry Involved in Theproduction of High-Titanium Slag from Ilmenite Feedstock,” Journal of the South African Institute of Mining and Metallurgy, Vol. 100, No. 1, 2000, pp. 35-44.
[20] R. A. Briggs and A. Sacco, “The Oxidation of Ilmenite and Its Relationship to the FeO-Fe2O3-TiO2 Phase Diagram at 1073 and 1140 K,” Vol. 24, No. 6, 1993, pp. 1257-1264. doi:10.1007/BF02668194
[21] M. Johansson, T. Mattisson and A. Lyngfelt, “Use of NiO/NiAl2O4 Particles in a 10 kW Chemical-Looping Combustor,” Industrial & Engineering Chemistry Research, Vol. 45, No. 17, 2006, pp. 5911-5919. doi:10.1021/ie060232s
[22] P. Kolbitsch, J. Bolhàr-Nordenkampf, T. Proll and H. Hofbauer, “Operating Experience with Chemical Looping Combustion in a 120 kW Dual Circulating Fluidized Bed (DCFB) Unit,” International Journal of Greenhouse Gas Control, Vol. 4, No. 2, 2010, pp. 180-185. doi:10.1016/j.ijggc.2009.09.014
[23] J. Bolhàr-Nordenkampf, T. Proll, P. Kolbitsch and H. Hofbauer, “Performance of a NiO-Based Oxygen Carrier for Chemical Looping Combustion and Reforming in a 120 kW Unit,” Energy Procedia, Vol. 1, No. 1, 2009, pp. 19-25. doi:10.1016/j.egypro.2009.01.005
[24] C. Linderholm, A. Abad, T. Mattisson and A. Lyngfelt, “160 h of Chemical-Looping Combustion in a 10 kW Reactor System with a NiO-Based Oxygen Carrier,” International Journal of Greenhouse Gas Control, Vol. 2, No. 4, 2008, pp. 520-530. doi:10.1016/j.ijggc.2008.02.006
[25] P. Kolbitsch, T. Proll and H. Hofbauer, “Modeling of a 120 kW Chemical Looping Combustion Reactor System Using a Ni-Based Oxygen Carrier,” Chemical Engineering Science, Vol. 64, No. 1, 2009, pp. 99-108. doi:10.1016/j.ces.2008.09.014
[26] C. Linderholm, T. Mattisson and A. Lyngfelt, “Long-Term Integrity Testing of Spray-Dried Particles in a 10 kW Chemical-Looping Combustor Using Natural Gas as Fuel,” Fuel, Vol. 88, No. 11, 2009, pp. 2083-2096. doi:10.1016/j.fuel.2008.12.018
[27] A. Cuadrat, A. Abad, J. Adánez, L. D. Diego, F. García-Labiano and P. Gayán, “Behaviour of Ilmenite as Oxygen Carrier in Chemical-Looping Combustion,” Fuel Processing Technologie, Vol. 94, No. 1, 2012, pp. 101-112. doi:10.1016/j.fuproc.2011.10.020
[28] A. Abad, J. Adánez, A. Cuadrat, F. García-Labiano, P. Gayán and L. F. de Diego, “Kinetics of Redox Reactions of Ilmenite for Chemical-Looping Combustion,” Chemical Engineering Science, Vol. 66, No. 4, 2011, pp. 689-702. doi:10.1016/j.ces.2010.11.010
[29] A. Ould-Dris, Y. Molodtsof and J. F. Large, “A Classification and Design Method for Moving Bed Flow in Pipes,” Powder Technology, Vol. 87, No. 1, 1996, pp. 49-57. doi:10.1016/0032-5910(96)80758-3
[30] M. L. Vries, I. E. Grey and J. D. Fitz Gerald, “Crystallographic Control in Ilmenite Reduction,” Metallurgical and Materials Transactions B, Vol. 38, No. 2, 2007, pp. 267-277. doi:10.1007/s11663-006-9015-0
[31] C. Kucukkaragoz and R. Eric, “Solid State Reduction of a Natural Ilmenite,” Minerals Engineering, Vol. 19, No. 3, 2006, pp. 334-337. doi:10.1016/j.mineng.2005.09.015.
[32] P. Pourghahramani and E. Forssberg, “Effects of Mechanical Activation on the Reduction Behavior of Hematite Concentrate,” International Journal of Mineral Processing, Vol. 82, No. 2, 2007, pp. 96-105. doi:10.1016/j.minpro.2006.11.003
[33] G. Flamant, D. Gauthier, M. Rivot, A. Rouanet and F. Sibieude, “Mécanismes de Réduction de L’ilménite Naturelle par le Méthane dans un Réacteur à Lit Fluidisé,” Powder Technology, Vol. 51, No. 3, 1987, pp. 251-260. doi:10.1016/0032-5910(87)80026-8
[34] C. V. Stevens, “Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power,” John Wiley & Sons, Hoboken, 2011, p. 348.
[35] A. Cuadrat, A. Abad, F. García-Labiano, P. Gayán, L. F. de Diego and J. Adánez, “Ilmenite as Oxygen Carrier in a Chemical Looping Combustion System with Coal,” Energy Procedia, Vol. 4, 2011, pp. 362-369. doi:10.1016/j.egypro.2011.01.063
[36] A. Cuadrat, A. Abad, F. García-Labiano, P. Gayán, L. F. de Diego and J. Adánez, “The Use of Ilmenite as Oxygen-Carrier in a 500 Wth Chemical-Looping Coal Combustion Unit,” International Journal of Greenhouse Gas Control, Vol. 5, No. 6, 2011, pp. 1630-1642. doi:10.1016/j.ijggc.2011.09.010
[37] A. Cuadrat, A. Abad, F. García-Labiano, P. Gayán, L. F. de Diego and J. Adánez, “Effect of Operating Conditions in Chemical-Looping Combustion of Coal in a 500 Wth Unit,” International Journal of Greenhouse Gas Control, Vol. 6, 2012, pp. 153-163. doi:10.1016/j.ijggc.2011.10.013
[38] N. Berguerand and A. Lyngfelt, “Design and Operation of a 10 kWth Chemical-Looping Combustor for Solid Fuels—Testing with South African Coal,” Fuel, Vol. 87, No. 12, 2008, pp. 2713-2726.
[39] N. Berguerand and A. Lyngfelt, “The Use of Petroleum Coke as Fuel in a 10 kWth Chemical-Looping Combustor,” International Journal of Greenhouse Gas Control, Vol. 2, No. 2, 2008, pp. 169-179.