Friendship Decompositions of Graphs: The general problem

Teresa Sousa^{*}

Show more

References

[1] B. Bollobas, “Modern Graph Theory,” Springer-Verlag, New York, 1998, xiii+394pp.

[2] P. Erdos, A. W. Goodman and L. Posa, “The representation of a graph by set intersections,” Can. J. Math., Vol. 18, 1966, pp. 106-112.

[3] B. Bollobas, “On complete subgraphs of different orders," Math. Proc. Camb. Phil. Soc., Vol. 79, 1976, pp. 19-24.

[4] R. L. Graham and H. O. Pollak, “On the addressing problem for loop switching,” Bell System Tech. J., Vol. 50, 1971, pp. 2495-259.

[5] H. Tverberg. “On the decomposition of Kn into complete bipartite graphs.” , J. Graph Theory, Vol. 6, 1982, pp. 493-494.

[6] G. W. Peck, “A new proof of a theorem of Graham and Pollak,” Discrete Math., Vol. 49, 1984, pp. 327-328.

[7] L. Lovasz, “On covering of graphs,” In “Theory of Graphs (Proc. Colloq., Tihany, 1966)”, Academic Press, 1968, pp. 231-236.

[8] N. Dean and M. Kouider, “Gallai's conjecture for disconnected graphs,” Discrete Math., Vol. 213, 2000, pp. 43-54.

[9] T. Sousa, “Friendship Decomposition of graphs,” Discrete Math., Vol. 308, 2008, pp.3352-3360.

[10] F. P. Ramsey, “On a Problem of Formal Logic,” Proc. London Math. Soc., Vol. 30, 1930, pp. 264-286.

[11] P. Erdos and G. Szekeres, “A combinatorial problem in geometry,” Compositio Math., Vol. 2, 1935, pp. 463-470.

[12] A. Thomason, “An upper bound for some Ramsey numbers,” J. Graph Theory, Vol. 12, 1988, pp. 509-517.

[13] J. Spencer, “Asymptotic lower bounds for Ramsey functions,” Discrete Math., Vol. 20, 1977/78, pp. 69-76.

[14] M. Ajtai, J. Komlos and E. Szemeredi, “A note on Ramsey numbers,” J. Combin. Theory Ser. A, Vol. 29, 1980, pp. 354-360.

[15] J. H. Kim, “The Ramsey number R(3; t) has order of magnitude t2/log t,” Random Structures Algorithms, Vol. 7, 1995, pp. 173-207