AM  Vol.1 No.3 , September 2010
On Complete Bicubic Fractal Splines
ABSTRACT
Fractal geometry provides a new insight to the approximation and modelling of experimental data. We give the construction of complete cubic fractal splines from a suitable basis and their error bounds with the original function. These univariate properties are then used to investigate complete bicubic fractal splines over a rectangle Bicubic fractal splines are invariant in all scales and they generalize classical bicubic splines. Finally, for an original function , upper bounds of the error for the complete bicubic fractal splines and derivatives are deduced. The effect of equal and non-equal scaling vectors on complete bicubic fractal splines were illustrated with suitably chosen examples.

Cite this paper
nullA. Chand and M. Navascués, "On Complete Bicubic Fractal Splines," Applied Mathematics, Vol. 1 No. 3, 2010, pp. 200-210. doi: 10.4236/am.2010.13024.
References
[1]   I. J. Schoenberg, “Contribution to the Problem of Approximation of Equidistant Data by Analytic Functions, Part A and B,” Quarterly of Applied Mathematics, Vol. 4, No. 2, 1946, pp. 45-99, 112-141.

[2]   M. F. Barnsley, “Fractals Everywhere,” Academic Press, Orlando, Florida, 1988.

[3]   M. F. Barnsley, “Fractal Functions and Interpolation,” Constructive Approximation, Vol. 2, No. 2, 1986, pp. 303-329.

[4]   D. S. Mazel and M. H. Hayes, “Using Iterated Function Systems to Model Discrete Sequences,” IEEE Transactions on Signal Processing, Vol. 40, No. 7, 1992, pp. 1724-1734.

[5]   M. F. Barnsley and A. N. Harrington, “The Calculus of Fractal Interpolation Functions,” Journal of Approximation Theory, Vol. 57, No. 1, 1989, pp. 14-34.

[6]   A. K. B. Chand and G. P. Kapoor, “Generalized Cubic Spline Fractal Interpolation Functions,” SIAM Journal on Numerical Analysis, Vol. 44, No. 2, 2006, pp. 655-676.

[7]   M. A. Navascués and M. V. Sebastián, “Smooth Fractal Interpolation,” Journal of Inequalities and Applications, 2006, pp. 1-20.

[8]   M. A. Navascués, “Fractal Polynomial Interpolation,” Zeitschrift fur Analysis und ihre Anwendungen, Vol. 25, No. 2, 2005, pp. 401-418.

[9]   M. A. Navascués, “A Fractal Approximation to Periodicity,” Fractals, Vol. 14, No. 4, 2006, pp. 315-325.

[10]   A. K. B. Chand and M. A. Navascués, “Generalized Hermite Fractal Interpolation,” Academia de Ciencias, Zara-goza, Vol. 64, 2009, pp. 107-120.

[11]   P. R. Massopust, “Fractal surfaces,” Journal of Mathematical Analysis and Applications, Vol. 151, No. 1, 1990, pp. 275-290.

[12]   J. S. Geronimo and D. Hardin, “Fractal Interpolation Functions from and their Projections,” Zeit- schrift fur Analysis und ihre Anwendungen, Vol. 12, No. 3, 1993, pp. 535-548.

[13]   N. Zhao, “Construction and Application of Fractal Interpolation Surfaces,” Visual Computer, Vol. 12, No. 3, 1996, pp. 132-146.

[14]   H. Xie and H. Sun, “The Study of Bivariate Fractal Interpolation Functions and Creation of Fractal Interpolation Surfaces,” Fractals, Vol. 5, No. 4, 1997, pp. 625- 634.

[15]   A. K. B. Chand and G. P. Kapoor, “Hidden Variable Bivariate Fractal Interpolation Surfaces,” Fractals, Vol. 11, No. 3, 2003, pp. 277-288.

[16]   P. Bouboulis and L. Dalla, “Fractal Interpolation Surfaces derived from Fractal Interpolation Functions,” Journal of Mathematical Analysis and Applications, Vol. 336, No. 2, 2007, pp. 919-936.

[17]   R. E. Carlson and C. A. Hall, “Error Bounds for Bicubic Spline Interpolation,” Journal of Approximation Theory, Vol. 7, 1973, pp. 41-47.

[18]   C. A. Hall and W. W. Meyer, “Optimal Error Bounds for Cubic Spline Interpolation,” Journal of Approximation Theory, Vol. 16, No. 2, 1976, pp. 105-122.

[19]   C. de Boor, “Bicubic Spline Interpolation,” Journal of Mathematics and Physics, Vol. 41, No. 4, 1962, pp. 212- 218.

[20]   J. H. Ahlberg, E. N. Nilson and J. L. Walsh, “The Theory of Splines and their Applications,” Academic Press, New York, 1967.

 
 
Top