A Retrospective Filter Trust Region Algorithm for Unconstrained Optimization

References

[1] M. J. D. Powell, “A New Algorithm for Unconstrained Optimization,” In: J. B. Rosen, O. L. Mangasarian and K. Ritter, Eds., Nonlinear Programming, Academic Press, New York, 1970.

[2]
K. Levenberg, “A Method for The Solution of Certain Nonlinear Problems in Least Squares,” The Quarterly of Applied Mathematics, Vol. 2, No. 2, 1944, pp. 164-168.

[3] D. W. Marquardt, “An Algorithm for Least Squares Estimation of Nonlinear Inequalities,” SIAM Journal on Applied Mathematics, Vol. 11, No. 2, 1963, pp. 431-441.

[4]
M. J. D. Powell, “Convergence Properties of a Class of Minimization Algorithms,” In: O. L. Mangasarian, R. R. Meyer and S. M. Robinson, Eds., Nonlinear Programming, Academic Press, New York, 1975, pp. 1-27.

[5]
M. J. D. Powell, “On the Global Convergence of Trust-Region Algorithms for Unconstrained Optimization,” Mathematical Programming, Vol. 29, No. 3, 1984, pp. 297-303.

[6]
G. A. Schultz, R. B. Schnabei and R. H. Byrd, “A Family of Trust-Region-Based Algorithms for Unconstrained Minimization with Strong Global Convergence,” SIAM Journal on Numerical Analysis, Vol. 22, No. 1, 1985, pp. 47-67.

[7]
D. C. Sorensen, “Newton’s Method with a Model Trust Region Modifications,” SIAM Journal on Numerical Analysis, Vol. 19, No. 2, 1982, pp. 409-426.

[8] J. J. More, “Recent Developments in Algorithms and Software for Trust Region Methods,” In A. R. Bachem, M. Grotshel and B. Korte, Eds., Mathematical Programming: The State of the Art, Springer-Verlag, Berlin, 1983, pp. 258-287.

[9]
Y. X. Yuan, “On the Convergence of Trust Region Algorithm,” Mathematica Numerica Sinica, Vol. 16, No. 3, 1996, pp. 333-346.

[10]
M. Lalee, J. Nocedal and T. Plantenga, “On the Implentation of an Algorithm for Large-Scale Equality Constrained Optimization,” SIAM Journal on Optimization, Vol. 8, No. 3, 1998, pp. 682-706.

[11]
A. Friedlander, J. M. Martinez and S. A. Santos, “A New Trust Region Algorithm for Bound Constrained Minimization,” Applied Mathematics and Optimization, Vol. 30, No. 3, 1994, pp. 235-266.

[12]
A. R. Conn, N. I. M. Gould and P. L. Toint, “Convergence Properties of Minimization Algorithms for Convex Constraints Using a Structured Trust Region,” SIAM Journal on Optimization, Vol. 6, No. 4, 1996, pp. 1059- 1086.

[13]
A. R. Conn, N. I. M. Gould and P. L. Toint, “Trust Region Methods,” MPS-SIAM Series on Optimization, SIAM, Philadelphia, 2000.

[14] R. Fletcher and S. Leyffer, “Nonlinear Programming without a Penalty Function,” Mathematical Programming, Vol. 91, No. 2, 2002, pp. 239-269.

[15] R. Fletcher, N. I. M. Gould, S. Leyffer, P. L. Toint and A. Wachter, “Global Convergence of a Trust-Region SQP- Filter Algorithm for General Nonlinear Programming,” SIAM Journal on Optimization, Vol. 13, No. 3, 2002, pp. 635-659.

[16]
R. Fletcher, S. Leyffer and P. L. Toint, “On the Global Convergence of a Filter-SQP Algorithm,” SIAM Journal on Optimization, Vol. 13, No. 1, 2002, pp. 44-59.

[17]
M. Ulbrich, S. Ulbrich and L. N. Vicente, “A Globally Convergent Primal Dual Interior-Point Filter Method for Nonconvex Nonlinear Programming,” Mathematical Programming, Vol. 100, No. 2, 2003, pp. 379-410.

[18]
A. W?chter and L. T. Biegler, “Line Search Filter Methods for Nonlinear Programming: Motivation and Global Convergence,” SIAM Journal on Optimization, Vol. 16, No. 1, 2005, pp. 1-31.

[19]
A. W?chter and L. T. Biegler, “Line Search Filter Methods for Nonlinear Programming: Local Convergence,” SIAM Journal on Optimization, Vol. 16, No. 1, 2005, pp. 32-48.

[20]
R. Fletcher, S. Leyffer and P. L. Toint, “A Brief History of Filter Methods,” SIAG/OPT Views and News, Vol. 18, No. 1, 2006, pp. 2-12.

[21]
N. I. M. Gould, C. Sainvitu and P. L. Toint, “A Filter- Trust-Region Method for Unconstrained Optimization,” SIAM Journal on Optimization, Vol. 16, No. 2, 2005, pp. 341-357.

[22]
W. H. Miao and W. Y. Sun, “A Filter Trust-Region Method for Unconstrained Optimization,” Numerical Mathematics ? A Journal of Chinese Universities. Gaodeng Xuexiao Jisuan Shuxue Xuebao, Vol. 29, No. 1, 2007, pp. 88-96.

[23]
L. Grippo, F. Lampariello and S. Lucidi, “A Nonmonotone Line Search Technique for Newton’s Methods,” SIAM Journal on Numerical Analysis, Vol. 23, No. 4, 1986, pp. 707-716.

[24]
P. L. Toint, “Non-Monotone Trust-Region Algorithms for Nonlinear Optimization Subject to Convex Constraints,” Mathematical Programming, Vol. 77, No. 1, 1997, pp. 69-94.

[25]
F. Bastin, V. Malmedy, M. Mouffe, P. L. Toint and D. Tomanos, “A Retrospective Trust-Region Method for Unconstrained Optimization,” Mathematical Programming, Vol. 123, No. 2, 2010, pp. 395-418.

[26]
A. Sartenaer, “Automatic Determination of an Initial Trust Region in Nonlinear Programming,” SIAM Journal on Scientific Computing, Vol. 18, No. 6, 1997, pp. 1788- 1803.

[27]
X. S. Zhang, Z. W. Chen and J. L. Zhang, “A Self-Adaptive Trust Region Method Unconstrained Optimization,” Operations Research Transactions, Vol. 5, No. 1, 2001, pp. 53-62.

[28]
N. I. M. Gould, D. Orban, A. Sartenaer and P. L. Toint, “Sensitivity of the Trust-Region Algorithms to Their Parameters,” 4OR: A Quarterly Journal of Operations Research, Vol. 3, No. 3, 2005, pp. 227-241.

[29] K. Schittkowski, “More Test Examples for Nonlinear Programming Codes,” Lecture Notes in Economics and Mathematical Systems, Springer Verlag, Berlin, Heideberg, Vol. 282, 1987.

[30]
H. Y. Benson, “Nonlinear Optimization Models by AMPL: Cute Set.” http://www.princeton.edu/~rvdb/ampl/nlmodels