IJMNTA  Vol.1 No.4 , December 2012
Deriving the Exact Percentage of Dark Energy Using a Transfinite Version of Nottale’s Scale Relativity
ABSTRACT

In this paper Nottale’s acclaimed scale relativity theory is given a transfinite Occam’s razor leading to exact predictions of the missing dark energy [1,2] of the cosmos. It is found that 95.4915% of the energy in the cosmos according to Einstein’s prediction must be dark energy or not there at all. This percentage is in almost complete agreement with actual measurements.


Cite this paper
M. Naschie and L. Marek-Crnjac, "Deriving the Exact Percentage of Dark Energy Using a Transfinite Version of Nottale’s Scale Relativity," International Journal of Modern Nonlinear Theory and Application, Vol. 1 No. 4, 2012, pp. 118-124. doi: 10.4236/ijmnta.2012.14018.
References
[1]   L. Amendola and S. Tsujikawa, “Dark Energy: Theory and Observations,” Cambridge University Press, Cambridge, 2010.

[2]   Y. Baryshev and P. Teerikorpi, “Discovery of Cosmic Fractals,” World Scientific, Singapore, 2002.

[3]   M. S. El Naschie, L. Nottale, S. Al Athel and G. Ord, “Fractal Space-Time and Cantorian Geometry in Quantum Mechanics,” Chaos, Solitons & Fractals, Vol. 7, No. 6, 1996, pp. 877-938.

[4]   M. S. El Naschie, “The Theory of Cantorian Space-Time and High Energy Particle Physics: An Informal Review,” Chaos, Solitons & Fractals, Vol. 41, No. 5, 2009, pp. 2635-2646. doi:10.1016/j.chaos.2008.09.059

[5]   M. S. El Naschie, “A Review of E-Infinity and the Mass Spectrum of High Energy Particle Physics,” Chaos, Solitons & Fractals, Vol. 19, No. 1, 2004, pp. 209-236. doi:10.1016/S0960-0779(03)00278-9

[6]   J.-H. He, L. Marek-Crnjac, M. A. Helal, S. I. Nada and O. E. Rossler, “Quantum Golden Mean Entanglement Test as the Signature of the Fractality of Micro Space-Time,” Nonlinear Science Letters B, Vol. 1, No. 2, 2011, pp. 45-50.

[7]   L. Nottale, “Scale Relativity and Fractal Space-Time,” Imperial College Press, London, 2011.

[8]   L. Nottale, “Fractal Space-Time and Micro Physics,” World Scientific, Singapore, 1993.

[9]   J. Polchinski, “String Theory,” Cambridge University Press, Cambridge, 1998.

[10]   C. Rovelli, “Quantum Gravity,” Cambridge University Press, Cambridge, 2004. doi:10.1017/CBO9780511755804

[11]   R. Penrose, “The Road to Reality—A Complete Guide to the Laws of the Universe, Jonathan Cape, London, 2004.

[12]   J. Mageuijo and L. Smolin, “Lorentz Invariance with an Invariant Energy Scale,” 2001. http://arxiv.org/abs/hep-th/0112090

[13]   J. Mageuijo, “Faster than the Speed of Light,” William Heinemann, London, 2003.

[14]   M. S. El Naschie, “Quantum Entanglement as a Consequence of a Cantorian Micro Space-Time Geometry,” Journal of Quantum Information Science, Vol. 1, No. 2, 2011, pp. 50-53. doi:10.4236/jqis.2011.12007

[15]   M. S. El Naschie, “On an Eleven Dimensional E-Infinity Fractal Space-Time Theory,” International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 7, No. 4, 2006, pp. 407-409.

[16]   M .S. El Naschie, “The Discrete Charm of Certain Eleven Dimensional Space-Time Theory,” International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 7, No. 4, 2006, pp. 477-481.

[17]   A. Connes, “Noncommutative Geometry,” Academic Press, San Diego, 1994.

[18]   M. S. El Naschie, “Transfinite Harmonization by Taking the Dissonance out of the Quantum Field Symphony,” Chaos, Solitons & Fractals, Vol. 36, No. 4, 2008, pp. 781-786. doi:10.1016/j.chaos.2007.09.018

[19]   S. T. Yau and S. Nadis, “The Shape of Inner Space,” Basic Book, Persens Group, New York, 2010.

[20]   J. Ambjorn, J. Jurkiewicz and R. Loll, “Lattice Quantum Gravity—An Update,” 2011. http://arxiv.org/abs/1105.5582

 
 
Top