OJGen  Vol.2 No.4 , December 2012
Transcriptome analysis of the Tityus serrulatus scorpion venom gland
ABSTRACT

The Tityus serrulatus scorpion is considered the most dangerous scorpion in Brazil and is responsible for several cases of human envenomation annually. In this study, we performed transcriptome profiling of the T. serrulatus venom gland. In addition to transcripts with housekeeping functions, such as those related to protein synthesis, energy supply and structural processes, transcripts from thirty-five families of venom peptides or proteins were identified. These transcripts included three new complete sequences of toxins and more than a dozen putative venom gland proteins/peptides. The venom gland transcriptome profile was verified by comparison with the previously determined proteomic profile. In conclusion, this transcriptome data provides novel insights into the putative mechanisms underlying the venomous character of T. serrulatus. The collected data of scorpion transcripts and proteins/peptides described herein may be an important resource for identifying candidate targets of molecular therapies and preventative measures.


Cite this paper
Alvarenga, E. , Mendes, T. , Magalhaes, B. , Siqueira, F. , Dantas, A. , Barroca, T. , Horta, C. and Kalapothakis, E. (2012) Transcriptome analysis of the Tityus serrulatus scorpion venom gland. Open Journal of Genetics, 2, 210-220. doi: 10.4236/ojgen.2012.24027.
References
[1]   Brazilian Ministry of Health (2011) http://portal.saude.gov.br/portal/saude/profissional/visualizar_texto.cfm?idtxt=31519

[2]   Chippaux, J.P. and Goyffon, M. (2008) Epidemiology of scorpionism: A global appraisal. Acta Tropica, 107, 71-79. doi:10.1016/j.actatropica.2008.05.021

[3]   Cologna, C.T., Marcussi, S., Giglio, J.R., Soares, A.M. and Arantes, E.C. (2009) Tityus serrulatus scorpion venom and toxins: An overview. Protein and Peptide Letters, 16, 920-932. doi:10.2174/092986609788923329

[4]   Possani, L.D., Alagón, A.C., Fletcher Jr, P.L. and Erickson, B.W. (1977) Purification and properties of mammalian toxins from the venom of Brazilian Scorpion Tityus serrulatus Lutz and Mello. Archives of Biochemistry and Biophysics, 180, 394-403. doi:10.1016/0003-9861(77)90053-4

[5]   Arantes, E.C., Prado, W.A., Sampaio, S.V., Giglio, J.R. (1989) A simplified procedure for the fractionation of Tityus serrulatus venom: Isolation and partial characterization of TsTX-IV, a new neurotoxin. Toxicon, 27, 907-916. doi:10.1016/0041-0101(89)90102-5

[6]   Sampaio, S.V., Arantes, E.C., Prado, W.A., Riccioppo Neto, F. and Giglio, J.R. (1991) Further characterization of toxins T1IV (TsTX-III) and T2IV from Tityus serrulatus scorpion venom. Toxicon, 29, 663-672. doi:10.1016/0041-0101(91)90058-Y

[7]   Martin-Eauclaire, M.F., Céard, B., Ribeiro, A.M., Diniz, C.R., Rochat, H. and Bougis, P.E. (1994) Biochemical, pharmacological and genomic characterisation of Ts IV, an alpha-toxin from the venom of the South American scorpion Tityus serrulatus. FEBS Letters, 342, 181-184. doi:10.1016/0014-5793(94)80496-6

[8]   Sampaio, S.V., Coutinho-Netto, J., Arantes, E.C., Marangoni, S., Oliveira, B. and Giglio, J.R. (1996) Isolation of toxin TsTX-VI from Tityus serrulatus scorpion venom. Effects on the release of neurotransmitters from synaptosomes. Biochemistry and Molecular Biology International, 39, 729-740. doi:10.1080/15216549600201811

[9]   Guatimosim, S.C., Prado, V.F., Diniz, C.R., Chávez-Olórtegui, C. and Kalapothakis, E. (1999) Molecular cloning and genomic analysis of TsNTxp: An immunogenic protein from Tityus serrulatus scorpion venom. Toxicon, 37, 507-517. doi:10.1016/S0041-0101(98)00187-1

[10]   Novello, J.C., Arantes, E.C., Varanda, W.A., Oliveira, B., Giglio, J.R. and Marangoni, S. (1999) TsTX-IV, a short chain four-disulfide-bridged neurotoxin from Tityus serrulatus venom which acts on Ca2+-activated K+ channels. Toxicon, 37, 651-660. doi:10.1016/S0041-0101(98)00206-2

[11]   Petricevich, V.L., Hernández Cruz, A., Coronas, F.I. and Possani, L.D. (2007) Toxin gamma from Tityus serrulatus scorpion venom plays an essential role in immunomodulation of macrophages. Toxicon, 50, 666-675. doi:10.1016/j.toxicon.2007.06.001

[12]   Mendes, T.M., Dias, F., Horta, C.C., Pena, I.F., Arantes, E.C. and Kalapothakis, E. (2008) Effective Tityus serrulatus anti-venom produced using the Ts1 component. Toxicon, 52, 787-793. doi:10.1016/j.toxicon.2008.08.005

[13]   Verano-Braga, T., Rocha-Resende, C., Silva, D.M., Ianzer, D., Martin-Eauclaire, M.F., et al. (2008) Tityus serrulatus hypotensins: A new family of peptides from scorpion venom. Biochemical and Biophysical Research Communications, 371, 515-520. doi:10.1016/j.bbrc.2008.04.104

[14]   Pimenta, A.M., St?cklin, R., Favreau, P., Bougis, P.E. and Martin-Eauclaire, M.F. (2001) Moving pieces in a proteomic puzzle: Mass fingerprinting of toxic fractions from the venom of Tityus serrulatus (Scorpiones, Buthidae). Rapid Communications in Mass Spectrometry, 15, 1562-1572.

[15]   Schwartz, E.F., Diego-Garcia, E., Rodríguez de la Vega, R.C. and Possani, L.D. (2007) Transcriptome analysis of the venom gland of the Mexican scorpion Hadrurus gertschi (Arachnida: Scorpiones). BMC genomics, 8, 119-119. doi:10.1186/1471-2164-8-119

[16]   Kozminsky-Atias, A., Bar-Shalom, A., Mishmar, D. and Zilberberg, N. (2008) Assembling an arsenal, the scorpion way. BMC Evolutionary Biology, 8, 333-333. doi:10.1186/1471-2148-8-333

[17]   D’Suze, G., Schwartz, E.F., García-Gómez, B.I., Sevcik, C. and Possani, L.D. (2009) Molecular cloning and nucleotide sequence analysis of genes from a cDNA library of the scorpion Tityus discrepans. Biochimie, 91, 1010-1019.

[18]   Ma, Y., Zhao, R., He, Y., Li, S., Liu, J., Wu, Y., et al. (2009) Transcriptome analysis of the venom gland of the scorpion Scorpiops jendeki: Implication for the evolution of the scorpion venom arsenal. BMC genomics, 10, 290-290. doi:10.1186/1471-2164-10-290

[19]   Silva, E.C., Camargos, T.S., Maranh?o, A.Q., Silva-Pereira, I., Silva, L.P., Possani, L.D., et al. (2009) Cloning and characterization of cDNA sequences encoding for new venom peptides of the Brazilian scorpion Opisthacanthus cayaporum. Toxicon, 54, 252-261. doi:10.1016/j.toxicon.2009.04.010

[20]   Ma, Y., Zhao, Y., Zhao, R., Zhang, W., He, Y., Wu, Y., et al. (2010) Molecular diversity of toxic components from the scorpion Heterometrus petersii venom revealed by proteomic and transcriptome analysis. Proteomics, 10, 2471-2485. doi:10.1002/pmic.200900763

[21]   Ruiming, Z., Yibao, M., Yawen, H., Zhiyong, D., Yingliang, W., Zhijian, C., et al. (2010) Comparative venom gland transcriptome analysis of the scorpion Lychas mucronatus reveals intraspecific toxic gene diversity and new venomous components. BMC genomics, 11, 452-452. doi:10.1186/1471-2164-11-452

[22]   Morgenstern, D., Rohde, B.H., King, G.F., Tal, T., Sher, D. and Zlotkin, E. (2011) The tale of a resting gland: Transcriptome of a replete venom gland from the scorpion Hottentotta judaicus. Toxicon, 57, 695-703. doi:10.1016/j.toxicon.2011.02.001

[23]   Ma, Y., He, Y., Zhao, R., Wu, Y., Li, W. and Cao, Z. (2011) Extreme diversity of scorpion venom peptides and proteins revealed by transcriptomic analysis: Implication for proteome evolution of scorpion venom arsenal. Journal of Proteomics, 75, 1563-1576. doi:10.1016/j.jprot.2011.11.029

[24]   Diego-García, E., Peigneur, S., Clynen, E., Marien, T., Czech, L., Schoofs, L., et al. (2012) Molecular diversity of the telson and venom components from Pandinus cavimanus (Scorpionidae Latreille 1802): Transcriptome, venomics and function. Proteomics, 12, 313-328. doi:10.1002/pmic.201100409

[25]   Almeida, D.D., Scortecci, K.C., Kobashi, L.S., Agnez-Lima, L.F., Medeiros, S.R., Silva-Junior, A.A., et al. (2012) Profiling the resting venom gland of the scorpion Tityus stigmurus through a transcriptomic survey. BMC Genomics, 13, 362. doi:10.1186/1471-2164-13-362

[26]   Rendón-Anaya, M., Delaye, L., Possani, L.D. and Herrera-Estrella, A. (2012) Global transcriptome analysis of the Scorpion Centruroides noxius: New toxin families and evolutionary insights from an ancestral scorpion species. PLoS One, 7, e43331. doi:10.1371/journal.pone.0043331

[27]   Adams, M.D., Kelley, J.M., Gocayne, J.D., Dubnick. M., Polymeropoulos, M.H., Xiao, H., et al. (1991) Complementary DNA sequencing: Expressed sequence tags and human genome project. Science, 252, 1651-1656. doi:10.1126/science.2047873

[28]   Takasuga, A., Hirotsune, S., Itoh, R., Jitohzono, A., Suzuki, H., Aso, H., et al. (2001) Establishment of a high throughput EST sequencing system using poly(A) tail-removed cDNA libraries and determination of 36 000 bovine ESTs. Nucleic Acids Research, 29, e108-e108. doi:10.1093/nar/29.22.e108

[29]   Zhang, B., Liu, Q., Yin, W., Zhang, X., Huang, Y., Luo, Y., et al. (2006) Transcriptome analysis of Deinagkistrodon acutus venomous gland focusing on cellular structure and functional aspects using expressed sequence tags. BMC genomics, 7, 152-152. doi:10.1186/1471-2164-7-152

[30]   Rates, B., Ferraz, K.K., Borges, M.H., Richardson, M., De Lima, M.E. and Pimenta, A.M. (2008) Tityus serrulatus venom peptidomics: Assessing venom peptide diversity. Toxicon, 52, 611-618. doi:10.1016/j.toxicon.2008.07.010

[31]   Kalapothakis, E., Jardim, S., Magalh?es, A.C., Mendes, T.M., De Marco, L., Afonso, L.C., et al. (2001) Screening of expression libraries using ELISA: Identification of immunogenic proteins from Tityus bahiensis and Tityus serrulatus venom. Toxicon, 39, 679-685. doi:10.1016/S0041-0101(00)00194-X

[32]   Ewing, B., Hillier, L., Wendl, M.C., Green, P. (1998) Basecalling of automated sequencer traces using phred. I. Accuracy assessment. Genome Research, 8, 175-185.

[33]   SeqClean. http://compbio.dfci.harvard.edu/tgi/software

[34]   Pertea, G., Huang, X., Liang, F., Antonescu, V., Sultana, R., Karamycheva, S., et al. (2003) TIGR gene indices clustering tools (TGICL): A software system for fast clustering of large EST datasets. Bioinformatics, 19, 651-652. doi:10.1093/bioinformatics/btg034

[35]   Consortium, T.U. (2010) The universal protein resource (UniProt) in 2010. Nucleic Acids Research, 38, D142-D148. doi:10.1093/nar/gkp846

[36]   Altschul, S., Madden, T., Sch?ffer, A., Zhang, J., Zhang, Z., Miller, et al. (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389-3402. doi:10.1093/nar/25.17.3389

[37]   Conesa, A., G?tz, S., García-Gómez, J., Terol, J., Talón, M. and Robles, M. (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21, 3674-3676. doi:10.1093/bioinformatics/bti610

[38]   Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H. and Kanehisa, M. (1999) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 27, 29-34. doi:10.1093/nar/27.1.29

[39]   King, G.F., Gentz, M.C., Escoubas, P. and Nicholson, G.M. (2008) A rational nomenclature for naming peptide toxins from spiders and other venomous animals. Toxicon, 52, 264-276. doi:10.1016/j.toxicon.2008.05.020

[40]   Barbosa-Silva, A., Satagopam, V., Schneider, R. and Ortega, J.M. (2008) Clustering of cognate proteins among distinct proteomes derived from multiple links to a single seed sequence. BMC Bioinformatics, 9, 141. doi:10.1186/1471-2105-9-141

[41]   Fernandes, G.R., Barbosa, D.V.C., Prosdocimi, F., Pena, I.A., Santana-Santos, L., Coelho Junior, et al. (2008) A procedure to recruit members to enlarge protein family databases—the building of UECOG (UniRef-Enriched COG Database) as a model. Genetics and Molecular Research, 7, 910-924. doi:10.4238/vol7-3X-Meeting008

[42]   L?ytynoja, A. and Goldman, N. (2010) webPRANK: A phylogeny-aware multiple sequence aligner with interacttive alignment browser. BMC Bioinformatics, 11, 579-579. doi:10.1186/1471-2105-11-579

[43]   Waterhouse, A.M., Procter, J.B., Martin, D.M.A, Clamp, M. and Barton, G.J. (2009) Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics, 25, 1189-1191. doi:10.1093/bioinformatics/btp033

[44]   Petersen, T.N., Brunak, S., von Heijne, G. and Nielsen, H. (2011) SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nature Methods, 8, 785-786. doi:10.1038/nmeth.1701

[45]   Diego-García, E., Batista, C.V., García-Gómez, B.I., Lucas, S., Candido, D.M., Gómez-Lagunas, F., et al. (2005) The Brazilian scorpion Tityus costatus karsch: Genes, peptides and function. Toxicon, 45, 273-283. doi:10.1016/j.toxicon.2004.10.014

[46]   Harris, F., Dennison, S.R. and Phoenix, D.A. (2009) Anionic antimicrobial peptides from eukaryotic organisms. Current Protein and Peptide Science, 10, 585-606. doi:10.2174/138920309789630589

[47]   Rodríguez de la Vega, R.C., Schwartz, E.F. and Possani, L.D. (2010) Mining on scorpion venom biodiversity. Toxicon, 56, 1155-1161. doi:10.1016/j.toxicon.2009.11.010

[48]   Jungo F., Estreicher A., Bairoch A., Bougueleret L. and Xenarios I. (2010) Animal toxins: How is complexity represented in databases? Toxins, 2, 262-282. doi:10.3390/toxins2020261

[49]   Kalapothakis, E. and Chávez-Olórtegui, C. (1997) Venom variability among several Tityus serrulatus specimens. Toxicon, 35, 1523-1529. doi:10.1016/S0041-0101(97)00017-2

[50]   Carballar-Lejarazú, R., Rodríguez, M., de la Cruz Hernández-Hernández, F., Ramos-Casta?eda, J., Possani, L., Zurita-Ortega, et al. (2008) Recombinant scorpine: A multifunctional antimicrobial peptide with activity against different pathogens. Cellular and Molecular Life Science, 65, 3081-3092. doi:10.1007/s00018-008-8250-8

[51]   Pimenta, A.M. and De Lima, M.E. (2005) Small peptides, big world: Biotechnological potential in neglected bioactive peptides from arthropod venoms. Journal of Peptide Science, 11, 670-676. doi:10.1002/psc.701

[52]   Dai, C., Ma, Y., Zhao, Z., Zhao, R., Wang, Q., Wu, Y., et al. (2008) Mucroporin, the first cationic host defense peptide from the venom of Lychas mucronatus. Antimicrobial Agents and Chemotherapy, 52, 3967-3972. doi:10.1128/AAC.00542-08

[53]   Prosdocimi, F., Bittencourt, D., da Silva, F.R., Kirst, M., Motta, P.C. and Rech, E.L. (2011) Spinning gland transcriptomics from two main clades of spiders (order: Araneae) insights on their molecular, anatomical and behavioral evolution. PLoS One, 6, e21634. doi:10.1371/journal.pone.0021634

[54]   Fletcher, P.L., Fletcher, M.D., Weninger, K., Anderson, T.E. and Martin, B.M. (2010) Vesicle-associated membrane protein (VAMP) cleavage by a new metalloprotease from the Brazilian scorpion Tityus serrulatus. The Journal of Biological Chemistry, 285, 7405-7416. doi:10.1074/jbc.M109.028365

[55]   Diego-García, E., Abdel-Mottaleb, Y., Schwartz, E.F., de la Vega, R.C., Tytgat, J. and Possani, L.D. (2008) Cytolytic and K+ channel blocking activities of beta-KTx and scorpine-like peptides purified from scorpion venoms. Cellular and Molecular Life Sciences, 65, 187-200. doi:10.1007/s00018-007-7370-x

 
 
Top