OJGen  Vol.2 No.4 , December 2012
Epigenetics mechanisms and degenerative diseases
Abstract: Epigenetic regulations are heritable changes in gene expression that occur in the absence of alterations in DNA sequences. Various epigenetic mechanisms include histone modifications and DNA methylations. In this review, we examine methods to study DNA methylations and their contribution to degenerative diseases by mediating the complex gene-by-environment interactions. Such epigenetic modifications despite being heritable and stably maintained are also potentially reversible and there is scope for the development of epigenetic therapies for this disease.
Cite this paper: Joshi, K. , Bhat, S. , Deshpande, P. , Sule, M. and Satyamoorthy, K. (2012) Epigenetics mechanisms and degenerative diseases. Open Journal of Genetics, 2, 173-183. doi: 10.4236/ojgen.2012.24023.

[1]   Huber, L.C., Stanczyk, J., Jüngel, A., Gay, S. (2007) Epigenetics in inflammatory rheumatic diseases. Arthritis & Rheumatism, 56, 3523-3531. Hdoi:10.1002/art.22948

[2]   Felsenfeld, G. (2007) A brief history of epigenetics. In: Allis, C.D., Jenuwein, T., Reinberg, D., Caparros, M.L., Eds. Epigenetics, Cold Spring Harbor Laboratory Press, New York, 15-22.

[3]   Ballestar, E., Esteller, M. and Richardson, B.C. (2006) The epigenetic face of systemic lupus erythematosus. The Journal of Immunology, 176, 7143-7147.

[4]   Klose, R.J. and Bird, A.P. (2006) Genomic DNA methyllation: The mark and its mediators. Trends in Biochemical Sciences, 31, 89-97. Hdoi:10.1016/j.tibs.2005.12.008

[5]   Ooi, S.K. and Bestor, T.H. (2008) The colorful history of active DNA demethylation. Cell, 133, 1145-1148. Hdoi:10.1016/j.cell.2008.06.009

[6]   Goll, M.G. and Bestor, T.H. (2005) Eukaryotic cytosine methyltransferases. Annual Review of Biochemistry, 74, 481-514. Hdoi:10.1146/annurev.biochem.74.010904.153721

[7]   Shirohzu, H., Kubota, T., Kumazawa, A., Sado, T., Chijiwa, T., Inagaki, K., Suetake, I., Tajima, S., Wakui, K., Miki, Y., Hayashi, M., Fukushima, Y. and Sasaki, H. (2002) Three novel DNMT3D mutations in Japanese patients with ICF syndrome. American Journal of Medical Genetics, 112, 31-37. Hdoi:10.1002/ajmg.10658

[8]   Brenner, C., Deplus, R., Didelot, C., Loriot, A., Viré, E., De Smet, C., Gutierrez, A., Danovi, D., Bernard, D., Boon, T., Pelicci, P.G., Amati, B., Kouzarides, T., de Launoit, Y., Di Croce, L. and Fuks, F. (2005) Myc represses transcripttion through recruitment of DNA methyltransferase corepressor. The EMBO Journal, 24, 336-346. Hdoi:10.1038/sj.emboj.7600509

[9]   Kangaspeska, S., Stride, B., Métivier, R., Polycarpou-Schwarz, M., Ibberson, D., Carmouche, R.P., Benes, V., Gannon, F. and Reid, G. (2008) Transient cyclical methylation of promoter DNA. Nature, 452, 112-115. Hdoi:10.1038/nature06640

[10]   Métivier, R., Gallais, R., Tiffoche, C., Le Péron, C., Jurkowska, R.Z., Carmouche, R.P., Ibberson, D., Barath, P., Demay, F., Reid, G., Benes, V., Jeltsch, A., Gannon, F. and Salbert, G. (2008) Cyclical DNA methylation of a transcriptionally active promoter. Nature, 452, 45-50. Hdoi:10.1038/nature06544

[11]   Ooi, S.K. and Bestor, T.H. (2008) The colorful history of active DNA demethylation. Cell, 133, 1145-1148. Hdoi:10.1016/j.cell.2008.06.009

[12]   Luger, K., Mader, A.W., Richmond, R., Sargent, D.F. and Richmond, T.J. (1997) Crystal structure of the nucleosome core particle at 2.8 a resolution. Nature, 389, 251-260. Hdoi:10.1038/38444

[13]   Roth, S.Y., Denu, J.M. and Allis, C.D. (2001) Histone acetyltransferases. Annual Review of Biochemistry, 70, 81-120. Hdoi:10.1146/annurev.biochem.70.1.81

[14]   Grant, P.A. and Berger, S.L. (1999) Histone acetyltransferase complexes. Seminars in Cell & Developmental Biology, 10, 169-177. Hdoi:10.1006/scdb.1999.0298

[15]   Ekwall, K., Olsson, T., Turner, B.M., Cranston, G. and Allshire, R.C. (1997) Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell, 91, 1021-1032. Hdoi:10.1016/S0092-8674(00)80492-4

[16]   Thomson, S., Mahadevan, L.C. and Clayton, A.L. (1999) MAP kinase-mediated signalling to nucleosomes and immediate-early gene induction. Seminars in Cell & Developmental Biology, 10, 205-214. Hdoi:10.1006/scdb.1999.0302

[17]   Downs, J.A., Lowndes, N.F. and Jackson, S.P. (2000) A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature, 408, 1001-1004. Hdoi:10.1038/35050000

[18]   Rogakou, E.P., Boon, C., Redon, C. and Bonner, W.M. (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. The Journal of Cell Biology, 146, 905-916. Hdoi:10.1083/jcb.146.5.905

[19]   Lee, D.Y., Teyssier, C., Strahl, B.D. and Stallcup, M.R. (2005) Role of protein methylation in regulation of transcription. Endocrine Reviews, 26, 147-170. Hdoi:10.1210/er.2004-0008

[20]   Lachner, M., Sengupta, R., Schotta, G. and Jenuwein, T. (2004) Trilogies of histone lysine methylation as epigenetic landmarks of the eukaryotic genome. Cold Spring Harbor Symposia on Quantitative Biology, 69, 209-218. Hdoi:10.1101/sqb.2004.69.209

[21]   Lachner, M., O’Carroll, D., Rea, S., Mechtler, K. and Jenuwein, T. (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature, 1, 410, 116-120. Hdoi:10.1038/35065132

[22]   Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J.R., Cole, P.A., Casero, R.A. and Shi, Y. (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell, 119, 941-953. Hdoi:10.1016/j.cell.2004.12.012

[23]   Tsukada, Y., Fang, J., Erdjument-Bromage, H., Warren, M.E., Borchers, C.H., Tempst, P. and Zhang, Y. (2006) Histone demethylation by a family of JmjC domaincontaining proteins. Nature, 439, 811-816. Hdoi:10.1038/nature04433

[24]   Nakahara, K. and Carthew, R.W. (2004) Expanding roles for miRNAs and siRNAs in cell regulation. Current Opinion in Cell Biology, 16, 127-133. Hdoi:10.1016/

[25]   Hannon, G.J. (2002) RNA interference. Nature, 418, 244-251. Hdoi:10.1038/418244a

[26]   Volpe, T.A., Kidner, C., Hall, I.M., Teng, G., Grewal, S.I. and Martienssen, R.A. (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science, 297, 1833-1837. Hdoi:10.1126/science.1074973

[27]   Hayashizaki, Y., Hirotsune, S., Okazaki, Y., Hatada, I., Shibata, H., Kawai, J., Hirose, K., Watanabe, S., Fushiki, S., Wada, S., et al. (1993) Restriction landmark genomic scanning method and its various applications. Electrophoresis, 14, 251-258. Hdoi:10.1002/elps.1150140145

[28]   Frigola, J., Ribas, M., Risques, R.A. and Peinado, M.A. (2002) Methylome profiling of cancer cells by amplifycation of inter-methylated sites [AIMS]. Nucleic Acids Research, 30, e28. Hdoi:10.1093/nar/30.7.e28

[29]   Huang, T.H., Perry, M.R. and Laux, D.E. (1999) Methylation profiling of CpG islands in human breast cancer cells. Human Molecular Genetics, 8, 459-470. Hdoi:10.1093/hmg/8.3.459

[30]   Stewart, F.J., Panne, D., Bickle, T.A. and Raleigh, E.A. (2000) Methyl-specific DNA binding by McrBC, a modification-dependent restriction enzyme. Journal of Molecular Biology, 298, 611-622. Hdoi:10.1006/jmbi.2000.3697

[31]   Ordway, J.M., Bedell, J.A., Citek, R.W., Nunberg, A., Garrido, A., Kendall, R., Stevens, J.R., Cao, D., Doerge, R.W., Korshunova, Y., Holemon, H., McPherson, J.D., Lakey, N., Leon, J., Martienssen, R.A. and Jeddeloh, J.A. (2006) Comprehensive DNA methylation profiling in a human cancer genome identifies novel epigenetic targets. Carcinogenesis, 27, 2409-2423. Hdoi:10.1093/carcin/bgl161

[32]   Ordway, J.M., Budiman, M.A., Korshunova, Y., Maloney, R.K., Bedell, J.A., Citek, R.W., Bacher, B., Peterson, S., Rohlfing, T., Hall, J., Brown, R., Lakey, N., Doerge, R.W., Martienssen, R.A., Leon, J., McPherson, J.D. and Jeddeloh, J.A. (2007) Identification of novel high-frequency DNA methylation changes in breast cancer. PLoS One, 2, e1314. Hdoi:10.1371/journal.pone.0001314

[33]   Khulan, B., Thompson, R.F., Ye, K., Fazzari, M.J., Suzuki, M., Stasiek, E., Figueroa, M.E., Glass, J.L., Chen, Q., Montagna, C., Hatchwell, E., Selzer, R.R., Richmond, T.A., Green, R.D., Melnick, A. and Greally, J.M. (2006) Comparative isoschizomer profiling of cytosine methylation: The HELP assay. Genome Research, 16, 1046-1055. Hdoi:10.1101/gr.5273806

[34]   Oda, M., Glass, J.L., Thompson, R.F., Mo, Y., Olivier, E.N., Figueroa, M.E., Selzer, R.R., Richmond, T.A., Zhang, X., Dannenberg, L., Green, R.D., Melnick, A., Hatchwell, E., Bouhassira, E.E., Verma, A., Suzuki, M. and Greally, J.M. (2009) High-resolution genome-wide cytosine methylation profiling with simultaneous copy number analysis and optimization for limited cell numbers. Nucleic Acids Research, 37, 3829-3839. Hdoi:10.1093/nar/gkp260

[35]   Ibrahim, A.E., Thorne, N.P., Baird, K., Barbosa-Morais, N.L., Tavaré, S., Collins, V.P., Wyllie, A.H., Arends, M.J. and Brenton, J.D. (2006) MMASS: An optimized array-based method for assessing CpG island methylation. Nucleic Acids Research, 34, e136. Hdoi:10.1093/nar/gkl551

[36]   Rollins, R.A., Haghighi, F., Edwards, J.R., Das, R., Zhang, M.Q., Ju, J. and Bestor, T.H. (2006) Large-scale structure of genomic methylation patterns. Genome Research, 16, 157-163. Hdoi:10.1101/gr.4362006

[37]   Schumacher, A., Kapranov, P., Kaminsky, Z., Flanagan, J., Assadzadeh, A., Yau, P., Virtanen, C., Winegarden, N., Cheng, J., Gingeras, T. and Petronis, A. (2006) Microarray-based DNA methylation profiling: Technology and applications. Nucleic Acids Research, 3, 528-542. Hdoi:10.1093/nar/gkj461

[38]   Mohn, F., Weber, M., Schübeler, D. and Roloff, T.C. (2009) Methylated DNA immunoprecipitation [MeDIP]. Methods in Molecular Biology, 507, 55-64. Hdoi:10.1007/978-1-59745-522-0_5

[39]   Weber, M., Davies, J.J., Wittig, D., Oakeley, E.J., Haase, M., Lam, W.L. and Schübeler, D. (2005) Chromosomewide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genetics, 37, 853-862. Hdoi:10.1038/ng1598

[40]   Weber, M., Hellmann, I., Stadler, M.B., Ramos, L., P??bo, S., Rebhan, M. and Schübeler, D. (2007) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nature Genetics, 39, 457-466. Hdoi:10.1038/ng1990

[41]   Rauch, T.A. and Pfeifer, G.P. (2009) The MIRA method for DNA methylation analysis. Methods in Molecular Biology, 507, 65-75. Hdoi:10.1007/978-1-59745-522-0_6

[42]   Statham, A.L. et al. (2012) Bisulphite-sequencing of chromatin immunoprecipitated DNA [BisChIP-seq] directly informs methylation status of histone-modified DNA. Genome Research, 22, 1120-1127. Hdoi:10.1101/gr.132076.111

[43]   Irizarry, R.A., Ladd-Acosta, C., Carvalho, B., Wu, H., Brandenburg, S.A., Jeddeloh, J.A., Wen, B. and Feinberg, A.P. (2008) Comprehensive high-throughput arrays for relative methylation [CHARM]. Genome Research, 18, 80-90. Hdoi:10.1101/gr.7301508

[44]   Kageyama, S., Shinmura, K., Yamamoto, H., Goto, M., Suzuki, K., Tanioka, F., Tsuneyoshi, T. and Sugimura, H. (2008) Fluorescence-labeled methylation-sensitive amplified fragment length polymorphism [FL-MS-AFLP] analysis for quantitative determination of DNA methylation and demethylation status. Japanese Journal of Clinical Oncology, 38, 317-322. Hdoi:10.1093/jjco/hyn021

[45]   Karimi, M. et al. (2006) LUMA [LUminometric Methylation Assay]—A high throughput method to the analysis of genomic DNA methylation. Experimental Cell Research, 312, 1989-1995. Hdoi:10.1016/j.yexcr.2006.03.006

[46]   Hatada, I., Fukasawa, M., Kimura, M., Morita, S., Yamada, K., Yoshikawa, T., Yamanaka, S., Endo, C., Sakurada, A., Sato, M., Kondo, T., Horii, A., Ushijima, T. and Sasaki, H. (2006) Genome-wide profiling of promoter methylation in human. Oncogene, 25, 3059-3064. Hdoi:10.1038/sj.onc.1209331

[47]   Falck, E. et al. (2012) Genome-wide DNA methylation level analysis by micellar electrokinetic chromatography and laser-induced fluorescence detection after treatment of cell lines with azacytidine and antifolates. Analytical Biochemistry, 421, 439-445. Hdoi:10.1016/j.ab.2011.09.027

[48]   Esteller, M., Fraga, M.F., Guo, M., Garcia-Foncillas, J., Hedenfalk, I., Godwin, A.K., Trojan, J., Vaurs-Barrière, C., Bignon, Y.J., Ramus, S., Benitez, J., Caldes, T., Akiyama, Y., Yuasa, Y., Launonen, V., Canal, M.J., Rodriguez, R., Capella, G., Peinado, M.A., Borg, A., Aaltonen, L.A., Ponder, B.A., Baylin, S.B. and Herman, J.G. (2001) DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Human Molecular Genetics, 10, 3001-3007. Hdoi:10.1093/hmg/10.26.3001

[49]   Ramsahoye, B.H. (2002) Measurement of genome wide DNA methylation by reversed-phase high-performance liquid chromatography. Methods, 27, 156-161. Hdoi:10.1016/S1046-2023(02)00069-5

[50]   Stach, D., Schmitz, O.J., Stilgenbauer, S., Benner, A., D?hner, H., Wiessler, M. and Lyko, F. (2003) Capillary electrophoretic analysis of genomic DNA methylation levels. Nucleic Acids Research, 31, e2. Hdoi:10.1093/nar/gng002

[51]   Song, L., James, S.R., Kazim, L., Karpf and A.R. (2005) Specific method for the determination of genomic DNA methylation by liquid chromatography-electrospray ionization tandem mass spectrometry. Analytical Chemistry, 77, 504-510. Hdoi:10.1021/ac0489420

[52]   Armstrong, K.M., Bermingham, E.N., Bassett, S.A., Treloar, B.P., Roy, N.C. and Barnett, M.P. (1994) Global DNA methylation measurement by HPLC using low amounts of DNA. Biotechnology Journal, 6, 113-117. Hdoi:10.1002/biot.201000267

[53]   Kurita, R. et al. (2012) Determination of DNA methylation using electrochemiluminescence with surface accumulable coreactant. Analytical Chemistry, 84, 1799-1803. Hdoi:10.1021/ac202692f

[54]   Ge, C. et al. (2012) A simple colorimetric detection of DNA methylation. The Analyst, 137, 2032-2035. Hdoi:10.1039/c2an35043b

[55]   Clark, S.J., Harrison, J., Paul, C.L. and Frommer, M. (1994) High sensitivity mapping of methylated cytosines. Nucleic Acids Research, 22, 2990-2997. Hdoi:10.1093/nar/22.15.2990

[56]   Herman, J.G., Graff, J.R., My?h?nen, S., Nelkin, B.D. and Baylin, S.B. (1996) Methylation-specific PCR: A novel PCR assay for methylation status of CpG islands. Proceedings of the National Academy of Sciences of the United States of America, 93, 9821-9826. Hdoi:10.1073/pnas.93.18.9821

[57]   Xiong, Z. and Laird, P.W. (1997) COBRA: A sensitive and quantitative DNA methylation assay. Nucleic Acids Research, 25, 2532-2534. Hdoi:10.1093/nar/25.12.2532

[58]   Gonzalgo, M.L. and Jones, P.A. (1997) Rapid quantitation fo methylation differences at specific sites using methylation-sensitive single nucleotide primer extension [Ms-SNuPE]. Nucleic Acids Research, 25, 2529-2531. Hdoi:10.1093/nar/25.12.2529

[59]   Lorente, A., Mueller, W., Urdangarín, E., Lázcoz, P., von Deimling, A. and Castresana, J.S. (2008) Detection of methyllation in promoter sequences by melting curve analysis-based semiquantitative real time PCR. BMC Cancer, 8, 61. Hdoi:10.1186/1471-2407-8-61

[60]   Bormann, F., et al. (2012) Methylation-specific ligation detection reaction [msLDR]: A new approach for multiplex evaluation of methylation patterns. Molecular Genetics and Genomics, 286, 279-291. Hdoi:10.1007/s00438-011-0645-9

[61]   Yokoyama, S., et al. (2012) The application of methylation specific electrophoresis [MSE] to DNA methylation analysis of the 5’ CpG island of mucin in cancer cells. BMC Cancer, 12, 67. Hdoi:10.1186/1471-2407-12-67

[62]   Bailey, V.J., Easwaran, H., Zhang, Y., Griffiths, E., Belinsky, S.A., Herman, J.G., Baylin, S.B., Carraway, H.E. and Wang, T.H. (2009) MS-qFRET: A quantum dot-based method for analysis of DNA methylation. Genome Research, 19, 1455-1461. Hdoi:10.1101/gr.088831.108

[63]   Bailey, V.J., Keeley, B.P., Razavi, C.R., Griffiths, E., Carraway, H.E. and Wang, T.H. (2010) DNA methylation detection using MS-qFRET, a quantum dot-based nanoassay. Methods, 52, 237-241. Hdoi:10.1016/j.ymeth.2010.03.007

[64]   Feng, F., Liu, L. and Wang, S. (2010) Fluorescent conjugated polymer-based FRET technique for detection of DNA methylation of cancer cells. Nature Protocols, 5, 1255-1264. Hdoi:10.1038/nprot.2010.79

[65]   Campan, M., Weisenberger, D.J., Trinh, B. and Laird, P.W. (2009) MethyLight. Methods in Molecular Biology, 507, 325-337. Hdoi:10.1007/978-1-59745-522-0_23

[66]   Trinh, B.N., Long, T.I. and Laird, P.W. (2001) DNA methylation analysis by MethyLight technology. Methods, 25, 456-462. Hdoi:10.1006/meth.2001.1268

[67]   Eads, C.A., Danenberg, K.D., Kawakami, K., Saltz, L.B., Blake, C., Shibata, D., Danenberg, P.V. and Laird, P.W. (2000) MethyLight: A high-throughput assay to measure DNA methylation. Nucleic Acids Research, 28, e32. Hdoi:10.1093/nar/28.8.e32

[68]   Deighton, C. and Criswell, L.A. (2006) Recent advances in the genetics of rheumatoid arthritis. Current Rheumatology Reports, 8, 394-400. Hdoi:10.1007/s11926-006-0071-x

[69]   Fu, L.H., Cong, B., Zhen, Y.F., Li, S.J., Ma, C.L. Ni, Z.Y., Zhang, G.Z., Zuo, M. and Yao, Y.X. (2007) Methylation status of the IL-10 gene promoter in the peripheral blood mononuclear cells of rheumatoid arthritis patients. Yi Chuan, 29, 1357-1361. Hdoi:10.1360/yc-007-1357

[70]   Nile, C., Read, R., Akil, M., Duff, G. and Wilson, A. (2008) Methylation status of a single CpG site in the IL6 promoter is related to IL6 messenger RNA levels and rheumatoid arthritis. Arthritis & Rheumatism, 58, 2686-2693. Hdoi:10.1002/art.23758

[71]   Ishida, K., Kobayashi, T., Ito, S., Komatsu, Y., Yokoyama, T., Okada, M., Abe, A., Murasawa, A. and Yoshie, H. (2011) Interleukin 6 gene promoter methylation in rheumatoid arthritis and chronic periodontitis. Journal of Periodontology, 83, 917-925. Hdoi:10.1902/jop.2011.110356

[72]   Kwon, N.H., Kim, J.S., Lee, J.Y., Oh, M.J. and Choi, D.C. (2008) DNA methylation and the expression of IL-4 and IFN-gamma promoter genes in patients with bronchial asthma. Journal of Clinical Immunology, 28, 139-146. Hdoi:10.1007/s10875-007-9148-1

[73]   Miller, R.L. and Ho, S.M. (2008) Environmental epigenetics and asthma: Current concepts and call for studies. American Journal of Respiratory and Critical Care Medicine, 177, 567-753. Hdoi:10.1164/rccm.200710-1511PP

[74]   Lee, D.U., Agarwal, S. and Rao, A. (2002) Th2 lineage commitment and efficient IL-4 production involves extended demethylation of the IL-4 gene. Immunity, 16, 649-660. Hdoi:10.1016/S1074-7613(02)00314-X

[75]   Agarwal, S. and Rao, A. (1998) Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity, 9, 765-775. Hdoi:10.1016/S1074-7613(00)80642-1

[76]   Tykocinski, L.O., Hajkova, P., Chang, H.D., Stamm, T., S?zeri, O., L?hning, M., Hu-Li, J., Niesner, U., Kreher, S., Friedrich, B., Pannetier, C., Grütz, G., Walter, J., Paul, W.E. and Radbruch, A. (2005) A critical control element for interleukin-4 memory expression in T helper lymphocytes. The Journal of Biological Chemistry, 280, 28177-28185. Hdoi:10.1074/jbc.M502038200

[77]   Jones, B. and Chen, J. (2006) Inhibition of IFN-gamma transcription by site-specific methylation during T helper cell development. The EMBO Journal, 25, 2443-2452. Hdoi:10.1038/sj.emboj.7601148

[78]   Brand, S. et al. (2012) DNA methylation of TH1/TH2 cytokine genes affects sensitization and progress of experimental asthma. Journal of Allergy and Clinical Immunology, 129, 1602-1610. Hdoi:10.1016/j.jaci.2011.12.963

[79]   Murahidy, A., Ito, M., Adcoc, I.M., Barnes, P.J. and Ito, K. (2005) Reduction of histone deacetylase expression and activity in smoking asthmatics. American Journal of Respiratory and Critical Care Medicine.

[80]   Huang, H.Y., Lee, C.C. and Chiang, B.L. (2009) Shorthairpin RNAs against eotaxin or interleukin-5 decrease airway eosinophilia and hyperresponsiveness in murine model of asthma. The Journal of Gene Medicine, 11, 112-118.

[81]   Yang, M., Rangasamy, D., Matthaei, K.I., Frew, A.J., Zimmmermann, N., Mahalingam, S., Webb, D.C., Tremethick, D.J., Thompson, P.J., Hogan, S.P., Rothenberg, M.E., Cowden, W.B. and Foster, P.S. (2006) Inhibition of arginase I actibity by RNA interference attenuates IL-13 induced airway hyperresponsiveness. The Journal of Immunology, 177, 5595-5603. Hdoi:10.1002/jgm.1285

[82]   Sood, A., et al. (2012) Methylated genes in sputum among older smokers with asthma. Chest, 142, 425-431. Hdoi:10.1378/chest.11-2519

[83]   Morales, E., et al. (2012) DNA hypomethylation at ALOX12 is associated with persistent wheezing in childhood. American Journal of Respiratory and Critical Care Medicine, 185, 937-943. Hdoi:10.1164/rccm.201105-0870OC

[84]   Baccarelli, A., et al. (2012) Nasal cell DNA methylation, inflammation, lung function and wheezing in children with asthma. Future Medicine, 4, 91-100.

[85]   Noer, A., S?rensen, A.L., Boquest, A.C. and Collas, P. (2006) Stable CpG hypomethylation of adipogenic promoters in freshly isolated, cultured, and differentiated mesenchymal stem cells from adipose tissue. Molecular Biology of the Cell, 17, 3543-3556. Hdoi:10.1091/mbc.E06-04-0322

[86]   Stepanow, S., Reichwald, K., Huse, K., Gausmann, U., Nebel, A., Rosenstiel, P., Wabitsch, M., Fischer-Posovszky, P. and Platzer, M. (2011) Allele-specific, age-dependent and BMI-associated DNA methylation of human MCHR1. PLoS One, 6, e17711. Hdoi:10.1371/journal.pone.0017711

[87]   Kwok, J.B. (2010) Role of epigenetics in Alzheimer’s and Parkinson’s disease. Epigenomics, 2, 671-682. Hdoi:10.2217/epi.10.43

[88]   Coppieters, N. and Dragunow, M. (2011) Epigenetics in Alzheimer’s disease: A focus on DNA modifications. Current Pharmaceutical Design, 17, 3398-3412. Hdoi:10.2174/138161211798072544

[89]   Bollati, V., Galimberti, D., Pergoli, L., Dalla Valle, E., Barretta, F., Cortini, F., Scarpini, E., Bertazzi, P.A. and Baccarelli, A. (2011) DNA methylation in repetitive elements and Alzheimer disease. Brain, Behavior, and Immunity, 25, 1078-1083. Hdoi:10.1016/j.bbi.2011.01.017

[90]   Wang, S.C., Oelze, B. and Schumacher, A. (2008) Agespecific epigenetic drift in late-onset Alzheimer’s disease. PLoS One, 3, e2698. Hdoi:10.1371/journal.pone.0002698

[91]   Hébert, S.S., Horré, K., Nicola?, L., Papadopoulou, A.S., Mandemakers, W., Silahtaroglu, A.N., Kauppinen, S., Delacourte, A. and Strooper, B.D. (2008) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/β-secretase expression. Proceedings of the National Academy of Sciences of the United States of America, 105, 6415-6420.

[92]   Fujiki, K., Kano, F., Shiota, K. and Murata, M. (2009) Expression of the peroxisome proliferator activated receptor γ gene is repressed by DNA methylation in visceral adipose tissue of mouse models of diabetes. BMC Biology, 7, 38. Hdoi:10.1186/1741-7007-7-38

[93]   Qiao, L., Schaack, J. and Shao, J. (2006) Suppression of adiponectin gene expression by histone deacetylase inhibitor valproic acid. Endocrinology, 147, 865-874. Hdoi:10.1210/en.2005-1030

[94]   Xu, K., Dai, X.L., Huang, H.C. and Jiang, Z.F. (2011) Targeting HDACs: A promising therapy for Alzheimer’s disease. Oxidative Medicine and Cellular Longevity, 2011, 143269. Hdoi:10.1155/2011/143269

[95]   Venkataramani, V., Rossner, C., Iffland, L., Schweyer, S., Tamboli, I.Y., Walter, J., Wirths, O. and Bayer, T.A. (2010) Histone deacetylase inhibitor valproic acid inhibits cancer cell proliferation via down-regulation of the Alzheimer amyloid precursor protein. The Journal of Biological Chemistry, 285, 10678-10689. Hdoi:10.1074/jbc.M109.057836

[96]   Gray, S.G. (2011) Epigenetic treatment of neurological disease. Epigenomics, 3, 431-450. Hdoi:10.2217/epi.11.67

[97]   Nagata, Y., Nakasa, T., Mochizuki, Y., Ishikawa, M., Miyaki, S., Shibuya, H., Yamasaki, K., Adachi, N., Asahara, H. and Ochi, M. (2009) Induction of apoptosis in the synovium of mice with autoantibody-mediated arthritis by the intraarticular injection of double-stranded MicroRNA-15a. Arthritis & Rheumatism, 60, 2677-2683. Hdoi:10.1002/art.24762

[98]   Inoue, A., Takahashi, K.A., Mazda, O., Arai, Y., Saito, M., Kishida, T., Shin-Ya, M., Morihara, T., Tonomura, H., Sakao, K., et al. (2009) Comparison of anti-rheumatic effects of local RNAi-based therapy in collagen induced arthritis rats using various cytokine genes as molecular targets. Modern Rheumatology, 19, 125-133. Hdoi:10.1007/s10165-008-0131-3

[99]   Lukiw, W.J., Zhao, Y. and Cui, J.G. (2008) An NF-κB-sensitive micro RNA-146a-mediated inflammatory circuit in alzheimer disease and in stressed human brain cells. The Journal of Biological Chemistry, 283, 31315-31322. Hdoi:10.1074/jbc.M805371200

[100]   Krzystanek, M., Pa?asz, A., Krzystanek, E., Krupka-Matuszczyk, I., Wiaderkiewicz, R., Skowronek, R. (2011) Sadenosyl L-methionine in CNS diseases. Psychiatria Polska, 45, 923-931.