Angular Precession of Elliptic Orbits. Mercury

Show more

References

[1] M. Hobson, G. Efstathiou and A. Lasenby, “General Relativity,” Cambridge University Press, Cambridge 2006, pp. 208-231. doi:10.1017/CBO9780511790904

[2] H. Stephani, “An Introduction to the Theory of the Gravitational Field,” Cambridge University Press, Cambridge 1982, pp. 192-193.

[3] B. Marion and S. Thornton, “Classical Dynamics of Particles and Systems,” Thomson-Brooks, Belmont, 2004, pp. 313- 314.

[4] C. Misner, K. Thorne and J. Wheeler, “Gravitation,” Physics Today, Vol. 27, No. 8, 1973, p. 47.
doi:10.1063/1.3128805

[5] A. Einstein. “The Collected Papers of A. Einstein,” Vol. 6, Princeton University Press, Princeton, 1996, p. 838.

[6] M. Berry, “Principles of Cosmology and Gravitation”. Cambridge University Press, 1990, p. 83.

[7] S. Carroll, “Spacetime and Geometry,” Addison Wesley, San Francisco, 2004, p. 214.

[8] J. Hartle, “Gravitation,” Addison Wesley, San Francisco, 2003, pp. 195

[9] M. Stewart, “Precession of the Perihelion of Mercury’s orbit,” American Journal of Physics, Vol. 73, No. 8. 2005, p. 730. doi:10.1119/1.1949625

[10] G. Adkins and J. McDonnell. “Orbital Precession Due to Central Force Perturbation,” Physical Review D, Vol. 75, No. 8, 2007, Article ID: 082001.
doi:10.1103/PhysRevD.75.082001

[11] B. Davies, “Elementary Theory of Perihelion Precession,” American Journal of Physics, Vol. 51, No. 10, 1983, p. 909. doi:10.1119/1.13382

[12] L. Landau and M. Lifshitz, “Mekhanika,” 3rd Edition, Butterwoth-Heinemann, Oxford, 1976, p. 40.

[13] V. Melnikov and N. Kolosnitsyn. “New Observational Tests of Non-Newtonian Interactions at Planetary and Binary Pulsar Orbital Distances,” Gravitation & Cosmology, Vol. 10, No. 1-2, 2004, pp. 137-140.

[14] S. Turyshev, J. Anderson and R. Hellings, “Relativistic Gravity Theory and Related Tests with a Mercury Orbiter Mission,” 1996. arXiv:gr-qc/9606028