Angular Precession of Elliptic Orbits. Mercury

Author(s)
Javier Bootello

ABSTRACT

The relativistic precession of Mercury -43.1 seconds of arc per century, is the result of a secular addition of 5.02×10^{-7 }rad. at the end of every orbit around the Sun. The question that arises in this paper, is to analyse the angular precession at each single point of the elliptic orbit and determine its magnitude and oscillation around the mean value, comparing key theoretical proposals. Underline also that, this astronomical determination has not been yet achieved, so it is considered that Messenger spacecraft, now orbiting the planet or the future mission BepiColombo, should provide an opportunity to perform it. That event will clarify some significant issues, now that we are close to reach the centenary of the formulation and first success of General Relativity.

The relativistic precession of Mercury -43.1 seconds of arc per century, is the result of a secular addition of 5.02×10

Cite this paper

J. Bootello, "Angular Precession of Elliptic Orbits. Mercury,"*International Journal of Astronomy and Astrophysics*, Vol. 2 No. 4, 2012, pp. 249-255. doi: 10.4236/ijaa.2012.24032.

J. Bootello, "Angular Precession of Elliptic Orbits. Mercury,"

References

[1] M. Hobson, G. Efstathiou and A. Lasenby, “General Relativity,” Cambridge University Press, Cambridge 2006, pp. 208-231. doi:10.1017/CBO9780511790904

[2] H. Stephani, “An Introduction to the Theory of the Gravitational Field,” Cambridge University Press, Cambridge 1982, pp. 192-193.

[3] B. Marion and S. Thornton, “Classical Dynamics of Particles and Systems,” Thomson-Brooks, Belmont, 2004, pp. 313- 314.

[4] C. Misner, K. Thorne and J. Wheeler, “Gravitation,” Physics Today, Vol. 27, No. 8, 1973, p. 47. doi:10.1063/1.3128805

[5] A. Einstein. “The Collected Papers of A. Einstein,” Vol. 6, Princeton University Press, Princeton, 1996, p. 838.

[6] M. Berry, “Principles of Cosmology and Gravitation”. Cambridge University Press, 1990, p. 83.

[7] S. Carroll, “Spacetime and Geometry,” Addison Wesley, San Francisco, 2004, p. 214.

[8] J. Hartle, “Gravitation,” Addison Wesley, San Francisco, 2003, pp. 195

[9] M. Stewart, “Precession of the Perihelion of Mercury’s orbit,” American Journal of Physics, Vol. 73, No. 8. 2005, p. 730. doi:10.1119/1.1949625

[10] G. Adkins and J. McDonnell. “Orbital Precession Due to Central Force Perturbation,” Physical Review D, Vol. 75, No. 8, 2007, Article ID: 082001. doi:10.1103/PhysRevD.75.082001

[11] B. Davies, “Elementary Theory of Perihelion Precession,” American Journal of Physics, Vol. 51, No. 10, 1983, p. 909. doi:10.1119/1.13382

[12] L. Landau and M. Lifshitz, “Mekhanika,” 3rd Edition, Butterwoth-Heinemann, Oxford, 1976, p. 40.

[13] V. Melnikov and N. Kolosnitsyn. “New Observational Tests of Non-Newtonian Interactions at Planetary and Binary Pulsar Orbital Distances,” Gravitation & Cosmology, Vol. 10, No. 1-2, 2004, pp. 137-140.

[14] S. Turyshev, J. Anderson and R. Hellings, “Relativistic Gravity Theory and Related Tests with a Mercury Orbiter Mission,” 1996. arXiv:gr-qc/9606028

[1] M. Hobson, G. Efstathiou and A. Lasenby, “General Relativity,” Cambridge University Press, Cambridge 2006, pp. 208-231. doi:10.1017/CBO9780511790904

[2] H. Stephani, “An Introduction to the Theory of the Gravitational Field,” Cambridge University Press, Cambridge 1982, pp. 192-193.

[3] B. Marion and S. Thornton, “Classical Dynamics of Particles and Systems,” Thomson-Brooks, Belmont, 2004, pp. 313- 314.

[4] C. Misner, K. Thorne and J. Wheeler, “Gravitation,” Physics Today, Vol. 27, No. 8, 1973, p. 47. doi:10.1063/1.3128805

[5] A. Einstein. “The Collected Papers of A. Einstein,” Vol. 6, Princeton University Press, Princeton, 1996, p. 838.

[6] M. Berry, “Principles of Cosmology and Gravitation”. Cambridge University Press, 1990, p. 83.

[7] S. Carroll, “Spacetime and Geometry,” Addison Wesley, San Francisco, 2004, p. 214.

[8] J. Hartle, “Gravitation,” Addison Wesley, San Francisco, 2003, pp. 195

[9] M. Stewart, “Precession of the Perihelion of Mercury’s orbit,” American Journal of Physics, Vol. 73, No. 8. 2005, p. 730. doi:10.1119/1.1949625

[10] G. Adkins and J. McDonnell. “Orbital Precession Due to Central Force Perturbation,” Physical Review D, Vol. 75, No. 8, 2007, Article ID: 082001. doi:10.1103/PhysRevD.75.082001

[11] B. Davies, “Elementary Theory of Perihelion Precession,” American Journal of Physics, Vol. 51, No. 10, 1983, p. 909. doi:10.1119/1.13382

[12] L. Landau and M. Lifshitz, “Mekhanika,” 3rd Edition, Butterwoth-Heinemann, Oxford, 1976, p. 40.

[13] V. Melnikov and N. Kolosnitsyn. “New Observational Tests of Non-Newtonian Interactions at Planetary and Binary Pulsar Orbital Distances,” Gravitation & Cosmology, Vol. 10, No. 1-2, 2004, pp. 137-140.

[14] S. Turyshev, J. Anderson and R. Hellings, “Relativistic Gravity Theory and Related Tests with a Mercury Orbiter Mission,” 1996. arXiv:gr-qc/9606028