JBiSE  Vol.5 No.12 A , December 2012
Magnetic resonance imaging of the ligaments of the craniocervical region at 3Tesla magnetic resonance unit: Quantitative and qualitative assessment
Abstract: Purpose: The assessment of the morphology and dimensions of the craniocervical ligaments using a 3 Tesla (T) Magnetic Resonance (MR) scanner, the correlatation of our results with those from cadaveric and other MR studies and the detection of the most appropriate sequence for the best imaging of the craniovertebral junction ligaments. Methods: 58 healthy volunteers (mean age 45 years) underwent a Magnetic Resonance Imaging (MRI) of the cervical spine at 3T MR unit. The MRI protocol included axial, coronal and sagittal Proton-Density (PD) sequences and sagittal T1 Fluid Attenuated Inversion Recovery (FLAIR) and T2 sequences. The images were evaluated by two radiologists and the posterior atlantoocipital ligament, the anterior atlantoocipital ligament, the transverse ligament and the apical ligament were anatomically detected, described and measured. Results: The transverse ligament was identified at 93.1%, the apical ligament was identified at 60.34%, the posterior at- lantooccipital membrane was identified at 94.8% and the anterior atlantooccipital membrane was identified at 96.5% of the cases. All ligaments appeared with low signal intensity, except the anterior atlantooc-cipital ligament which appeared with intermediate signal intensity. Their length, width and thickness were measured and, in general, correlated well with other anatomic and MR studies. Conclusion: Reliable assessment of the morphology and signal intensity of the craniocervical ligaments can be achieved with PD sequence at 3T MR imaging. The sagittal plane provides better delineation of the craniocervical (CC) ligaments but the axial and coronal planes are of paramount importance in the assessment of the transverse and apical ligaments.
Cite this paper: Vassiou, K. , Eftichia, K. , Marinos, K. , Kotrogianni, F. , Fanariotis, M. , Fezoulidis, I. and Arvanitis, D. (2012) Magnetic resonance imaging of the ligaments of the craniocervical region at 3Tesla magnetic resonance unit: Quantitative and qualitative assessment. Journal of Biomedical Science and Engineering, 5, 901-909. doi: 10.4236/jbise.2012.512A114.

[1]   Daniels, D.L., Williams, A.L. and Haughton, V.M. (1983) Computed tomography of the articulations and ligaments at the occipito-atlantoaxial region. Radiology, 146, 709- 716

[2]   Baumert, B., Wortler, K., Steffinger, D., Schmidt, G.P., Reiser, M.F. and Baur-Melnyk, A. (2009) Assessment of the internal craniocervical ligaments with a new magnetic resonance imaging sequence: Three-dimensional turbo spin echo with variable flip-angle distribution (SPACE). Magnetic Resonance Imaging, 27, 954-960. doi:10.1016/j.mri.2009.01.012

[3]   Dvorak, J. and Panjabi, M.M. (1987). Functional anatomy of the alar ligaments. Spine, 12, 183-189. doi:10.1097/00007632-198703000-00016

[4]   Kim, H.J., Jun, B.Y., Kim, W.H., Cho, Y.K., Lim, M.K. and Suh, C.H. (2002) MR imaging of the alar ligament: Morphologic changes during axial rotation of the head in asymptomatic young adults. Skeletal Radiology, 31, 637- 642. doi:10.1007/s00256-002-0572-2

[5]   Krakenes, J., Kaale, B.R., Rorvik, J. and Gilhus, N.E. (2001) MRI assessment of normal ligamentous structures in the craniovertebral junction. Neuroradiology, 43, 1089- 1097. doi:10.1007/s002340100648

[6]   Pfirrmann, C.W., Binkert, C.A., Zanetti, M., Boos, N. and Hodler, J. (2001) MR morphology of alar ligaments and occipitoatlantoaxial joints: Study in 50 asymptomatic subjects. Radiology, 218, 133-137.

[7]   Saifuddin, A., Green, R. and White, J. (2003) Magnetic resonance imaging of the cervical ligaments in the ab- sence of trauma. Spine, 28, 1686-1691.

[8]   Schweitzer, M.E., Hodler, J., Cervilla, V. and Resnick, D. (1992) Craniovertebral junction: Normal anatomy with MR correlation. American Journal of Roentgenology, 158, 1087-1090.

[9]   Vetti, N., Krakenes, J., Eide, G.E., Rorvik, J., Gilhus, N.E. and Espeland, A. (2009) MRI of the alar and transverse ligaments in whiplash-associated disorders (WAD) grades 1-2: High-signal changes by age, gender, event and time since trauma. Neurora-diology, 51, 227-235. doi:10.1007/s00234-008-0482-7

[10]   Willauschus, W.G., Kladny, B., Beyer, W.F., Gluckert, K., Arnold, H. and Scheithauer, R. (1995) Lesions of the alar ligaments. In vivo and in vitro studies with magnetic resonance imaging. Spine, 20, 2493-2498. doi:10.1097/00007632-199512000-00006

[11]   Yuksel, M., Heiserman, J.E. and Sonntag, V.K. (2006) Magnetic resonance imaging of the craniocervical junc- tion at 3-T: Observation of the accessory atlantoaxial ligaments. Neurosurgery, 59, 888-892.

[12]   Bagley, L.J. (2006). Imaging of spinal trauma. Radiologic Clinics of North America, 44, 1-12. doi:10.1016/j.rcl.2005.08.004

[13]   Stabler, A., Eck, J., Penning, R., Milz, S.P., Bartl, R., Resnick, D. and Reiser, M. (2001) Cervical spine: Post- mortem assessment of accident injuries—comparison of radiographic, MR imaging, anatomic, and pathologic fin- dings. Radiology, 221, 340-346. doi:10.1148/radiol.2212010336

[14]   Van Geothem, J.W., Biltjes, I.G., van den Hauwe, L., Parizel, P.M. and De Schepper, A.M. (1996) Whiplash injuries: Is there a role for imaging? European Journal of Radiology, 22, 30-37. doi:10.1016/0720-048X(95)00696-N

[15]   Ellis, J.H., Martel, W., Lillie, J.H. and Aisen, A.M. (1991) Magnetic resonance imaging of the normal cranioverte- bral junction. Spine, 16, 105-111.

[16]   Ashman, C.J., Farooki, S., Abduljalil, A.M. and Chakeres, D.W. (2002). In vivo high resolution coronal MRI of the wrist at 8.0 tesla. Journal of Computer Assisted Tomo- graphy, 26, 387-391. doi:10.1097/00004728-200205000-00013

[17]   Farooki, S., Ashman, C.J., Yu, J.S., Abduljalil, A. and Chakeres, D. (2002) In vivo high-resolution MR imaging of the carpal tunnel at 8.0 tesla. Skeletal Radiology, 31, 445-450. doi:10.1007/s00256-002-0506-z

[18]   Saupe, N., Prussmann, K.P., Luechinger, R., Bosiger, P., Marincek, B. and Weishaupt, D. (2005) MR imaging of the wrist: Comparison between 1.5- and 3-T MR imag- ing—preliminary experience. Radiology, 234, 256-264. doi:10.1148/radiol.2341031596

[19]   Engelman, E.D., Schnitzlein, S.H., Hilbelink, D.R., Mur- tagh, F.R. and Silbiger, M.L. (1989) Imaging anatomy of the cranio-vertebral junction (occipito-atlanto-axial joint). Clinical Anatomy, 2, 241-252. doi:10.1002/ca.980020405

[20]   Krakenes, J., Kaale, B.R., Nordli, H., Moen, G., Rorvik, J. and Gilhus, N.E. (2003) MR analysis of the transverse ligament in the late stage of whiplash injury. Acta Ra- diologica, 44, 637-644.

[21]   Tubbs, R.S., Grabb, P., Spooner, A., Wilson, W., and Oakes, W.J. (2000). The apical ligament: anatomy and functional significance. Journal of Neurosurgery, 92, 197-200.

[22]   Grabb, B.C., Frye, T.A., Hedlund, G.L., Vaid, Y.N., Grabb, P.A. and Royal, S.A. (1999) MRI diagnosis of suspected atlanto-occipital dissociation in childhood. Pe- diatric Radiology, 29, 275-281. doi:10.1007/s002470050588

[23]   Hecker, P. (1922) Appareil ligamenteux occipito-atlo?do- axo?dien: étude d’anatomie comparée. Anatomy, Cytol- ogy, Histology, Histopathology, 1, 417-433.

[24]   Krakenes, J., Kaale, B.R., Moen, G., Nordli, H., Gilhus, N.E. and Rorvik, J. (2002) MRI assessment of the alar ligaments in the late stage of whiplash injury: A study of structural abnormalities and observer agreement. Neuro- radiology, 44, 617-624. doi:10.1007/s00234-002-0799-6

[25]   Myran, R., Kvistad, K.A., Nygaard, O.P., Andresen, H., Folvik, M. and Zwart, J.A. (2008) Magnetic resonance imaging assessment of the alar ligaments in whiplash in- juries: A case-control study. Spin, 33, 2012-2016. doi:10.1097/BRS.0b013e31817bb0bd

[26]   Williams, P.L.W.R., Dyston, M. and Banister, L.H. (1989) In Gray’s anatomy. 37th Edition, Churchill-Liv- ingstone, Edinburgh.

[27]   Tubbs, R.S., Hallock, J.D., Radcliff, V., Naftel, R.P., Mortazavi, M., Shoja, M.M., Loukas, M. and Cohen- Gadol, A.A. (2011) Ligaments of the craniocervical junc- tion. Journal of Neurosurgery: Spine, 14, 697-709. doi:10.3171/2011.1.SPINE10612

[28]   Panjabi, M.M., Oxland, T.R. and Parks, E.H. (1991) Quantitative anatomy of cervical spine ligaments. Part II. Middle and lower cervical spine. Journal of Spinal Dis- orders, 4, 277-285. doi:10.1097/00002517-199109000-00004

[29]   Tubbs, R.S., Kelly, D.R., Humphrey, E.R., Chua, G.D., Shoja, M.M., Salter, E.G., Acakpo-Satchivi, L., Wellons, J.C., Blount, J.P. and Oakes, W.J. (2007) The tectorial membrane: Anatomical, biomechanical, and histological analysis. Clinical Anatomy, 20, 382-386. doi:10.1002/ca.20334

[30]   Cattrysse, E., Barbero, M., Kool, P., Gagey, O., Clarys, J.P. and Van Roy, P. (2007) 3D morphometry of the transverse and alar ligaments in the occipito-atlanto-axial complex: An in vitro analysis. Clinical Anatomy, 20, 892- 898. doi:10.1002/ca.20559

[31]   Okazaki, K. (1995) Anatomical study of the ligaments in the occipito-atlantoaxial complex. Nihon Seikeigeka Gak- kai Zasshi, 69, 1259-1267.

[32]   Panjabi, M.M., Crisco, J.J., Lydon, C. and Dvorak, J. (1998) The mechanical properties of human alar and transverse ligaments at slow and fast extension rates. Cli- nical Biomechanics, 13, 112-120. doi:10.1016/S0268-0033(97)00053-3

[33]   Soames, R. (1995) Skeletal system. In: Williams, P.L., Bannister, L.H., Berry, M.M., et al., Eds., Gray’s Anat- omy, 38th Edition, Churchill Livingstone, New York, 425-736.

[34]   Harris, M.B., Duval, M.J., Davis Jr., J.A. and Bernini, P.M. (1993) Anatomical and roentgenographic features of atlantooccipital instability. Journal of Spinal Disorders, 6, 5-10. doi:10.1097/00002517-199302000-00002

[35]   Roy, S., Hol, P.K., Laerum, L.T. and Tillung, T. (2004) Pitfalls of magnetic resonance imaging of alar ligament. Neuroradiology, 46, 392-398. doi:10.1007/s00234-004-1193-3