Teleportation of Superposition of Coherent States Using 4-Partite States and Effect of Decoherence on Fidelity

Show more

A scheme of teleporting a superposition of coherent states |α> and |-α> using a 4-partite state, a beam splitter and two phase shifters was proposed by N. Ba An (Phys. Rev. A, 68, 022321, 2003). The author concluded that the probability for successful teleportation is only 1/4 in the limit |α|→∞ and 1/2 in the limit |α|→∞. In this paper it is shown that the author’s scheme can be altered slightly so as to obtain an almost perfect teleportation for an appreciable value of |α|^{2}. We find the minimum assured fidelity *i.e*., the minimum fidelity for an arbitrarily chosen information state, which we write MAF in this paper, for different cases. We also discuss the effect of decoherence on teleportation fidelity. We find that if no photons are counted in both final outputs, MAF, is still nonzero except when there is no decoherence and the initial state (the state to be teleported) is even coherent state. For non-zero photon counts, MAF decreases with increase in |α|^{2} for low noise. For high noise, however, it increases, attains a maximum value and then decreases with |α|^{2}. The average fidelity depends appreciably on the initial state for low values of |α|^{2} only.

References

[1] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres and W. K. Wootters, “Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels,” Physical Review Letters, Vol. 70, No. 13, 1993, pp. 1895-1899.
doi:10.1103/PhysRevLett.70.1895

[2] S. J. van Enk and O. Hirota, “Entangled Coherent States: Teleportation and Decoherence,” Physical Review A, Vol. 64, No. 2, 2001, Article ID: 022313.
doi:10.1103/PhysRevA.64.022313

[3] X. Wang, “Quantum Teleportation of Entangled Coherent States,” Physical Review A, Vol. 64, No. 2, 2001, Article ID: 022302. doi:10.1103/PhysRevA.64.022302

[4] N. Ba An, “Teleportation of Coherent-State Superpositions within a Network” Physical Review A, Vol. 68, No. 2, 2003, Article ID: 022321.
doi:10.1103/PhysRevA.68.022321

[5] D. P. DiVincenzo, “Quantum Computation,” Science, Vol. 270, No. 5234, 1995, pp. 255-261.
doi:10.1126/science.270.5234.255

[6] C. H. Bennett and S. J. Weisner, “Communication via One- and Two-Particle operators on Einstein-Podolsky-Rosen States,” Physical Review Letters, Vol. 69, No. 20, 1992, pp. 2881-2884. doi:10.1103/PhysRevLett.69.2881

[7] A. K. Ekert, “Quantum Cryptography Based on Bell’s Theorem,” Physical Review Letters, Vol. 67, No. 6, 1991, pp. 661-663. doi:10.1103/PhysRevLett.67.661

[8] M. Murao, D. Jonathan, M. B. Plenio and V. Vedral, “Quantum Telecloning and Multiparticle Entanglement,” Physical Review A, Vol. 59, No. 1, 1999, pp. 156-161.
doi:10.1103/PhysRevA.59.156

[9] A. Einstein, B. Podolsky and N. Rosen, “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?” Physical Review, Vol. 47, No. 10, 1935, pp. 777-780. doi:10.1103/PhysRev.47.777

[10] M. K. Mishra, A. K. Maurya and H. Prakash, “Two-Way Quantum Communication: Secure Quantum Information Exchange,” Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 44, 2011, Article ID: 115504.

[11] M. K Mishra and H. Prakash “Teleportation of a two Mode Entangled Coherent States,” Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 43, 2010, Article ID: 185501.
doi:10.1088/0953-4075/43/18/185501

[12] J.-Q. Liao and L.-M. Kuang, “Near-Complete Teleportation of Two-Mode Four-Component Entangled Coherent States,” Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 40, 2007, p. 1183.
doi:10.1088/0953-4075/40/6/009

[13] H. N. Phien and N. Ba An, “Quantum Teleportation of an Arbitrary Two-Mode Coherent State Using Only Linear Optics Elements,” Physics Letters A, Vol. 372, No. 16, 2008, pp. 2825-2829. doi:10.1016/j.physleta.2007.12.069

[14] D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter and A. Zeilinger, “Experimental Entanglement Swapping: Entangling Photons that Never Interacted,” Nature, Vol. 390, 1997, pp. 575.
doi:10.1038/37539

[15] D. Boschi, S. Branca, F. De Martini, L. Hardy and S. Popescu, “Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels,” Physical Review Letters, Vol. 80, No. 6, 1998, pp. 1121-1125.
doi:10.1103/PhysRevLett.80.1121

[16] T. Ide, H. F. Hofmann, T. Kobayashi and A. Fursawa, “Continuous-Variable Teleportation of Single-Photon States via Classical Channel,” Physical Review A, Vol. 66, 2002, Article ID: 011213

[17] M. Ikram, S.-Y Zhu and M. S. Zubairy, “Quantum Teleportation of an Entangled State,” Physical Review A, Vol. 62, No. 2, 2000, Article ID: 022307.
doi:10.1103/PhysRevA.62.022307

[18] M. S. Zubairy, “Quantum Teleportation of a Field State,” Physical Review A, Vol. 58, No. 6, 1998, p. 4368.
doi:10.1103/PhysRevA.58.4368

[19] A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble and E. S. Polzik, “Unconditional Quantum Teleportation,” Science, Vol. 282, No. 5389, 1998, pp. 706-709.

[20] S. L. Braunstein and H. J. Kimble, “Teleportation of Continuous Quantum Variables,” Physical Review Letters, Vol. 80, 1998, p. 869.

[21] L. Vaidman, “Teleportation of Quantum States,” Physical Review A, Vol. 49, 1994, p. 1473.
doi:10.1103/PhysRevA.49.1473

[22] T. Ide, H. F. Hofmann, T. Kobayashi and A. Fursawa, “Continuous-Variable Teleportation Of Single-Photon States,” Physical Review A, Vol. 65, No. 1, 2001, Article ID: 012313. doi:10.1103/PhysRevA.65.012313

[23] B. C. Sanders, “Entangled Coherent States,” Physical Review A, Vol. 45, No. 9, 1992, p. 6811.
doi:10.1103/PhysRevA.45.6811

[24] H. Jeong, W. Son, M. S. Kim, D. Ahn and C. Brukner, “Quantum Nonlocality Test for Continuous-Variable States with Dichotomic Observables,” Physical Review A, Vol. 67, No. 1, 2003, Article ID: 012106.
doi:10.1103/PhysRevA.67.012106

[25] H. Jeong, M. S. Kim and J. Lee, “Quantum-Information Processing for a Coherent Superposition State via a Mixed Entangled Coherent Channel,” Physical Review A, Vol. 64, No. 5, 2001, Article ID: 052308.
doi:10.1103/PhysRevA.64.052308

[26] H. Jeong and M. S. Kim, “Purification of Entangled Coherent States,” Quantum Information and Computation, Vol. 2, 2002, p. 208.

[27] H.-Y. Fan and H.-L. Lu An, “New Two-Mode Coherent-Entangled State and Its Application,” Journal of Physics A, Vol. 37, No. 45, 2004, Article ID: 10993.
doi:10.1088/0305-4470/37/45/017

[28] H. Prakash, N. Chandra, R. Prakash and Shivani, “Entanglement Diversion between Two Pairs of Entangled Coherent States: Fidelity and Decoherence,” International Journal of Modern Physics B, Vol. 23, No. 4, 2009, p. 585.

[29] H. Prakash, N. Chandra, R. Prakash and Shivani, “Swapping between Two Pairs of Non-Orthogonal Entangled Coherent States,” International Journal of Modern Physics B, Vol. 23, No. 8, 2009, p. 2083.

[30] H. Prakash, N. Chandra, R. Prakash and Shivani, “Effect of Decoherence on Fidelity in Teleportation of Entangled Coherent States,” International Journal of Quantum Information, Vol. 6, No. 5, 2008, p. 1077.
doi:10.1142/S0219749908004213

[31] H. Prakash, N. Chandra, R. Prakash and Shivani, “Effect of Decoherence on Fidelity in Teleportation Using Entangled Coherent States,” Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 40, No. 8, 2007, p. 1613. doi:10.1088/0953-4075/40/8/012

[32] H. Prakash, N. Chandra, R. Prakash and Shivani, “Improving the Teleportation of Entangled Coherent States,” Physical Review A, Vol. 75, No. 4, 2007, Article ID: 044305. doi:10.1103/PhysRevA.75.044305

[33] H. Prakash, N. Chandra, R. Prakash and Shivani, “Improving the Entanglement Diversion between Two Pairs of Entangled Coherent States,” International Journal of Modern Physics B, Vol. 24, No. 17, 2010, p. 3331.

[34] H. Prakash, N. Chandra, R. Prakash and Shivani, “Almost Perfect Teleportation Using Entangled States,” International Journal of Modern Physics B, Vol. 24, No. 17, 2010, p. 3383.

[35] V. V. Dodonov, I. A. Malkin And V. I. Man’ko, “Even and Odd Coherent States and Excitations of a Singular Oscillator,” Physica A, Vol. 72, No. 3, 1974, p. 597.

[36] W. K. Lai, V. Buzek and P. L. Knight, “Nonclassical Fields in a Linear Directional Coupler,” Physical Review A, Vol. 43, No. 11, 1991, p. 6323.
doi:10.1103/PhysRevA.43.6323

[37] Y. K. Cheong, H. Kim and H. W. Lee, “Near-Complete Teleportation of a Superposed Coherent State,” Physical Review A, Vol. 70, No. 3, 2004, Article ID: 032327.
doi:10.1103/PhysRevA.70.032327