Designing Optical Fibers: Fitting the Derivatives of a Nonlinear Pde-Eigenvalue Problem

Show more

References

[1] W. A. Reed, “Fiber Design for the 21st Century,” Optical Society of America, San Francisco, 1999

[2] T. A. Lenahan, “Calculation of Modes in an Optical Fiber using the Finite Element Method and EISPACK,” The Bell System Technical Journal, Vol. 62, No. 9, 1983, pp. 2663-2694

[3] S. V. Kartalopoulous, “Introduction to DWDM Technology,” IEEE Press, Piscataway, 2000.

[4] C. Bischof, A. Carle, G. Corliss, A. Griewank and P. Hovland, “ADIFOR-Generating Derivative Codes for Fortran Programs,” Scientific Programming, Vol. 1, No. 1, 1992, pp. 11-29.

[5] L. Kaufman, “Eigenvalue Problems in Fiber Optics Design,” SIAM Journal on Matrix Analysis and Applications, Vol. 28, No. 1, 2006, pp.105-117.
doi:10.1137/S0895479803432708

[6] X. Huang, Z. Bai and Y. Su, “Nonlinear Rank One Modification of the Symmetric Eigenvalue Problem,” Journal of Computational Mathematics, Vol. 28, No. 2, 2010, pp. 218-234

[7] T. Betcke, N. J. Higham, V. Mehrmann, C Schr?der and F. Tisseur, “NLEVP: A Collection of Nonlinear Eigenvalue Problems,” Manchester Institute of Mathematical Sciences Preprint, Manchester, 2008

[8] H. Voss, K. Yildiztekin and X. Huang, “Nonlinear Low Rank Modification of a symmetric Eigenvalue Problem,” SIAM Journal on Matrix Analysis and Applications, Vol. 32, No.2, 2011, pp. 515-535. doi:10.1137/070779528

[9] H. Schwetlick and K. Schreiber, “Nonlinear Rayleigh Functionals,” Linear Algebra and its Applications, Vol. 436, No. 10, 2011, pp. 3991-4016.

[10] B. S. Liao, Z. Bai, L.-Q. Lee and K. Ko, “Nonlinear Rayleigh-Ritz Iterative Methods for Solving Large Scale Nonlinear Eigenvalue Problems,” Taiwanese Journal of Mathematics, Vol. 14, No. 3, 2010, pp. 869-883.

[11] J. R. Bunch and L. Kaufman, “Some Stable Methods for Calculating Inertia and Solving Symmetric Linear Systems,” Mathematics of Computation, Vol. 31, No. 137, 1977, pp. 163-179.
doi:10.1090/S0025-5718-1977-0428694-0

[12] L. Kaufman, “The Retraction Algorithm for Factoring Banded Symmetric Matrices,” Numerical Linear Algebra with Applications, Vol. 14, No. 3, 2007, pp. 237-254.
doi:10.1002/nla.529

[13] P. Lancaster, “On Eigenvalues of Matrices Dependent on a Parameter,” Numerische Mathematik, Vol. 6, No. 1, 1964, pp. 377-387. doi:10.1007/BF01386087

[14] L. Kaufman, “Calculating Dispersion Derivatives in Fiber-Optic Design,” Journal of Lightwave Technology, Vol. 25, No. 3, 2007, pp. 811-819.
doi:10.1109/JLT.2006.889648

[15] F. Brechet, J. Marcou, D. Pagnoux and P. Roy, “Complete Analysis of the Characteristics of Propagation into Photonic Crystal Fibers by the Finite Element Method,” Optical Fiber Technology, Vol. 6, No. 2, 2000 pp. 181-191. doi:10.1006/ofte.1999.0320

[16] K. Saitoh, M. Koshiba, T. Hasegawa and E. Sasaoka, “Chromatic Dispersion Control in Photonic Optical Fibers: Application to Ultra-Flattened Dispersion,” Optics Express, Vol. 11, No. 8, 2003, pp. 843-852.
doi:10.1364/OE.11.000843

[17] S. Johnson and J. Joannopoulos, “Block-Iterative Frequency-Domain Methods for Maxwell’s Equations in a Planewave Basis,” Optics Express, Vol. 8, No. 3, 2001, pp. 173-190. doi:10.1364/OE.8.000173

[18] S. Guo, F. Wu, S. Albin, H. Tai and R. Rogowski, “Loss and Dispersion Analysis of Microstructured Fibers by Finite Difference Method,” Optics Express, Vol. 12, No. 15, 2004, pp. 3341-3352. doi:10.1364/OPEX.12.003341

[19] J. W. Fleming, “Material Dispersion in Lightguide Glasses,” Electronics Letters, Vol. 14, No. 11, 1978, pp. 326-328. doi:10.1049/el:19780222

[20] D. Marcuse, “Field Deformation and Loss Caused by Curvature of Optical Fibers,” Journal of the Optical Society America, Vol. 66, No. 4, 1972, pp. 311-320.
doi:10.1364/JOSA.66.000311

[21] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov and D. Sorensen, “LAPACK Users’ Guide,” 2nd Edition, Society for Industrial and Applied Mathematics, Philadelphia, 1995.