A Nonmonotone Line Search Method for Regression Analysis

Show more

References

[1] D. M. Bates and D. G. Watts, “Nonlinear regression analysis and its applications,” New York: John Wiley & Sons, 1988.

[2] S. Chatterjee and M. Machler, “Robust regression: A weighted least squares approach, communications in sta-tistics,” Theorey and Methods, 26, pp. 1381-1394, 1997.

[3] R. Christensen, “Analysis of variance, design and regres-sion: Applied statistical methods,” New York: Chapman and Hall, 1996.

[4] N. R. Draper and H. Smith, “Applied regression analysis,” 3rd ed., New York: John Wiley & Sons, 1998.

[5] F. A. Graybill and H. K. Iyer, “Regression analysis: Con-cepts and applications, Belmont,” CA: Duxbury Press, 1994.

[6] R. F. Gunst and R. L. Mason, “Regression analysis and its application: A data-Oriented approach,” New York: Mar-cel Dekker, 1980.

[7] R. H. Myers, “Classical and modern regression with ap-plications,” 2nd edition, Boston: PWS-KENT Publishing Company, 1990.

[8] R. C. Rao, “Linear statistical inference and its applica-tions,”New York: John Wiley & Sons, 1973.

[9] D. A. Ratkowsky, “Nonlinear regression modeling: A uni?ed practical approach,” New York: Marcel Dekker, 1983.

[10] D. A. Ratkowsky, “Handbook of nonlinear regression modeling,” New York: Marcel Dekker, 1990.

[11] A. C. Rencher, “Methods of multivariate analysis,” New York: John Wiley & Sons, 1995.

[12] G. A. F. Seber and C. J. Wild, “Nonlinear regression,” New York: John Wiley & Sons, 1989.

[13] A. Sen and M. Srivastava, “Regression analysis: Theory, methods, and applications,” New York: Springer-Verlag, 1990.

[14] J. Fox, “Linear statistical models and related methods,” New York: John Wiley & Sons, 1984.

[15] S. Haberman and A. E. Renshaw, “Generalized linear models and actuarial science,” The Statistician, 45, pp. 407-436, 1996.

[16] S. Haberman and A. E. Renshaw, “Generalized linear models and excess mortality from peptic ulcers,” Insur-ance: Mathematics and Economics, 9, pp. 147-154, 1990.

[17] R. R. Hocking, “The analysis and selection of variables in linear regression,” Biometrics, 32, pp. 1-49, 1976.

[18] P. McCullagh and J. A. Nelder, “Generalized linear mod-els,” London: Chapman and Hall, 1989.

[19] J. A. Nelder and R. J. Verral, “Credibility theory and gener-alized linear models,” ASTIN Bulletin, 27, pp. 71-82, 1997.

[20] M. Raydan, “The Barzilai and Borwein gradient method for the large scale unconstrained minimization prob-lem,”SIAM Journal of Optimization, 7, pp. 26-33, 1997.

[21] J. Schropp, “A note on minimization problems and multistep methods,” Numerical Mathematics, 78, pp. 87-101, 1997.

[22] J. Schropp, “One-step and multistep procedures for con-strained minimization problems,” IMA Journal of Nu-merical Analysis, 20, pp. 135-152, 2000.

[23] D. J. Van. Wyk, “Di?erential optimization techniques,” Appl. Math. Model, 8, pp. 419-424, 1984.

[24] M. N. Vrahatis, G. S. Androulakis, J. N. Lambrinos, and G. D. Magolas, “A class of gradient unconstrained minimiza-tion algorithms with adaptive stepsize,” Journal of Compu-tational and Applied Mathematics, 114, pp. 367-386, 2000.

[25] G. L. Yuan and X. W. Lu, “A new line search method with trust region for unconstrained optimization,” Com-munications on Applied Nonlinear Analysis, Vol. 15, No. 1, pp. 35-49, 2008.

[26] G. Yuan, X. Lu, and Z. Wei, “New two-point stepsize gradient methods for solving unconstrained optimization problems,” Natural Science Journal of Xiangtan Univer-sity, (1)29, pp. 13-15, 2007.

[27] G. L. Yuan and Z. X. Wei, “New line search methods for unconstrained optimization,” Journal of the Korean Statis-tical Society, 38, pp. 29-39, 2009.

[28] Y. Dai, “A nonmonotone conjugate gradient algorithm for unconstrained optimization,” Journal of Systems Science and Complexity, 15, pp. 139-145, 2002.

[29] Y. Dai and Y. Yuan, “A nonlinear conjugate gradient with a strong global convergence properties,” SIAM Journal of Optimization, 10, pp. 177-182, 2000.

[30] R. Fletcher, “Practical Method of Optimization,” Vol 1: Unconstrained Optimization, 2nd edition, Wiley, New York, 1997.

[31] R. Fletcher and C. Reeves, “Function minimization by conjugate gradients,” The Computer Journal, 7, pp, 149-154, 1964.

[32] Y. Liu and C. Storey, “E?cient generalized conjugate gradient algorithms, part 1: theory,” Journal of Optimiza-tion Theory and Application, 69, pp. 17-41, 1992.

[33] E. Polak and G. Ribiere, “Note sur la convergence de directions conjugees,” Rev. Francaise informat Recherche Operatinelle, 3e Annee, 16, pp. 35-43, 1969.

[34] Z. Wei, G. Li, and L. Qi, “New nonlinear conjugate gra-dient formulas for large-scale unconstrained optimization problems,” Applied Mathematics and Computation, 179, pp. 407-430, 2006.

[35] Z. Wei, S. Yao, and L. Liu, “The convergence properties of some new conjugate gradient methods,” Applied Mathematics and Computation, 183, pp. 1341-1350, 2006.

[36] G. L. Yuan, “Modi?ed nonlinear conjugate gradient meth-ods with su?cient descent property for large-scale opti-mization problems,” Optimization Letters, DOI: 10. 1007/s11590-008-0086-5, 2008.

[37] G. L. Yuan and X. W. Lu, “A modi?ed PRP conjugate gradient method,” Annals of Operations Research, 166, pp. 73-90, 2009.

[38] J. C. Gibert and J. Nocedal, “Global convergence proper-ties of conjugate gradient methods for optimization,” SIAM Journal of Optimization, 2, pp. 21-42, 1992.

[39] J. J. Mor′e, B. S. Garbow, and K. E. Hillstrome, “Testing unconstrained optimization software,” ACM Transactions Math. Software, 7, pp. 17-41, 1981.

[40] L. Grippo, F. Lamparillo, and S. Lucidi, “A nonmonotone line search technique for Newton’s method,” SIAM Jour-nal of Numerical Analysis, 23, pp. 707-716, 1986.

[41] L. Grippo, F. Lamparillo, and S. Lucidi, “A truncate New-ton method with nonmonotone line search for uncon-strained optimization,” Journal of Optimization Theory and Applications, 60, pp. 401-419, 1989.

[42] L. Grippo, F. Lamparillo, and S. Lucidi, “A class of non-monotone stabilization methods in unconstrained optimi-zation,” Numerical Mathematics, 59, pp. 779-805, 1991.

[43] G. H. Liu, J. Y. Han, and D. F. Sun, “Global convergence analysis of the BFGS algorithm with nonmonotone line-search,” Optimization, Vol. 34, pp. 147-159, 1995.

[44] G. H. Liu, J. M. Peng, The convergence properties of a nonmonotonic algorithm,” Journal of Computational Mathematics, 1, pp. 65-71, 1992.

[45] J. Y. Han and G. H. Liu, “Global convergence analysis of a new nonmonotone BFGS algorithm on convex objective functions,” Computational Optimization and Applications 7, pp. 277-289, 1997.

[46] G. L. Yuan and Z. X. Wei, “The superlinear convergence analysis of a nonmonotone BFGS algorithm on convex objective functions,” Acta Mathematica Sinica, English Series, Vol. 24, No. 1, pp. 35-42, 2008.

[47] H. C. Zhang and W. W. Hager, “A nonmonotone line search technique and its application to unconstrained op-timization,” SIAM Journal of Optimization, Vol. 14, No. 4, pp. 1043-1056, 2004.

[48] M. R. Hestenes and E. Stiefel, “Method of conjugate gra-dient for solving linear equations,” J, Res. Nat. Bur. Stand., 49, pp. 409-436, 1952.

[49] S. Chatterjee, A. S. Hadi, and B. Price, “Regression analy-sis by example,” 3rd Edition, John Wiley & Sons, 2000.