Elastoplastic Large Deformation Using Meshless Integral Method
Abstract: In this paper, the meshless integral method based on the regularized boundary integral equation [1] has been extended to analyze the large deformation of elastoplastic materials. The updated Lagrangian governing integral equation is obtained from the weak form of elastoplasticity based on Green-Naghdi’s theory over a local sub-domain, and the moving least-squares approximation is used for meshless function approximation. Green-Naghdi’s theory starts with the additive decomposition of the Green-Lagrange strain into elastic and plastic parts and considers aJ2elastoplastic constitutive law that relates the Green-Lagrange strain to the second Piola-Kirchhoff stress. A simple, generalized collocation method is proposed to enforce essential boundary conditions straightforwardly and accurately, while natural boundary conditions are incorporated in the system governing equations and require no special handling. The solution algorithm for large deformation analysis is discussed in detail. Numerical examples show that meshless integral method with large deformation is accurate and robust.
Cite this paper: J. Ma and X. Xin, "Elastoplastic Large Deformation Using Meshless Integral Method," World Journal of Mechanics, Vol. 2 No. 6, 2012, pp. 339-360. doi: 10.4236/wjm.2012.26040.
References

[1]   Bodin, J. Ma, X. J. Xin and P. Krishnaswami, “A Meshless Integral Method Based on Regularized Boundary Integral Equation,” Computer Methods in Applied Mechanics and Engineering, Vol. 195, No. 44-47, 2006, pp. 6258-6286. Hdoi:10.1016/j.cma.2005.12.005

[2]   A. E. Green and P. M. Naghdi, “A General Theory of an Elasto-Plastic Continuum,” Archive for Rational Mechanics and Analysis, Vol. 18, No. 4, 1965, pp. 251-281. Hdoi:10.1007/BF00251666

[3]   J. H. Chiou, J. D. Lee and A. G. Erdman, “Comparison between Two Theories of Plasticity,” Computers & Structures, Vol. 24, No. 1, 1986, pp. 23-37. Hdoi:10.1016/0045-7949(86)90332-9

[4]   E. H. Lee, “Elastic-Plastic Deformation at Finite Strains,” Journal of Applied Mechanics, Vol. 36, No. 1, 1969, pp. 1-6. Hdoi:10.1115/1.3564580

[5]   J. H. Chiou, J. D. Lee and A. G. Erdman, “Development of a Three-Dimensional Finite Element Program for Large Strain Elastic-Plastic Solids,” Computers & Structures, Vol. 36, No. 4, 1990, pp. 631-645. Hdoi:10.1016/0045-7949(90)90078-G

[6]   J. D. Lee, “A Large-Strain Elastic-Plastic Finite Element Analysis of Rolling Process,” Computer Methods in Applied Mechanics and Engineering, Vol. 161, No. 3-4, 1998, pp. 315-347. Hdoi:10.1016/S0045-7825(97)00324-1

[7]   P. Hu, “Finite-Element Numerical Analysis of Sheet Metal under Unaxial Tension with a New Yield Criterion,” Journal of Materials Processing Technology, Vol. 31, No. 1-2, 1992, pp. 245-253. Hdoi:10.1016/0924-0136(92)90025-N

[8]   T. Belytschko, P. Krysl and Y. Krongauz, “A Three-Dimensional Explicit Element-Free Galerkin Method,” International Journal for Numerical methods in Fluids, Vol. 24, No. 12, 1997, pp. 1253-1270. Hdoi:10.1002/(SICI)1097-0363(199706)24:12<1253::AID-FLD558>3.0.CO;2-Z

[9]   R. Rossi and M. K. Alves, “On the Analysis of an EFG Method under Large Deformations and Volumetric Locking,” Computational Mechanics, Vol. 39, No. 4, 2007, pp. 381-399. Hdoi:10.1007/s00466-006-0035-z

[10]   Y. P. Chen, A. Eskandarian, M. Oskard and J. D. Lee, “Meshless Analysis of High-Speed Impact,” Theoretical and Applied Fracture Mechanics, Vol. 44, No. 3, 2005, pp. 201-207. Hdoi:10.1016/j.tafmec.2005.09.007

[11]   A. Eskandarian, Y. P. Chen, M. Oskard and J. D. Lee, “Meshless Analysis of Fracture. Plasticity and Impact,” Proceedings of ASME 2003 International Mechanical Engineering Congress and Exposition, Washington DC, 15-21 November 2003, pp. 89-97.

[12]   Y. Xiong, H. Cui and S. Long, “Meshless local PetrovGalerkin Method for Large Deformation Analysis,” Chinese Journal of Computational Mechanics, Vol. 26, No. 3, 2009, pp. 353-357.

[13]   D. Hu, S. Long, X. Han and G. Li, “A Meshless Local Petrov-Galerkin Method for Large Deformation Contact Analysis of Elastomers,” Engineering Analysis with Boundary Elements, Vol. 31, No. 7, 2007, pp. 657-666. Hdoi:10.1016/j.enganabound.2006.11.005

[14]   Z. Han, A. Rajendran and S. Atluri, “Meshless Local Petrov-Galerkin (MLPG) Approaches for Solving Nonlinear Problems with Large Deformations and Rotations,” Computer Modeling in Engineering and Sciences, Vol. 10, No. 1, 2005, pp 1-12.

[15]   D. Li, Z. Lu and W. Kang, “A Coupled Finite Element and Meshless Local Petrov-Galerkin Method for Large Deformation Problems,” Advanced Materials Research, Vol. 97-101, 2010, pp. 3777-3780. Hdoi:10.4028/www.scientific.net/AMR.97-101.3777

[16]   Y. Gu, Q. Wang and K. Lam, “A Meshless Local Kriging Method for Large Deformation Analyses,” Computer Methods in Applied Mechanics and Engineering, Vol. 196, No. 9-12, 2007, pp. 1673-1684. Hdoi:10.1016/j.cma.2006.09.017

[17]   Y. Gu, C. Yan and P. Yarlagadda, “An Advanced Meshless Technique for Large Deformation Analysis of Metal Forming,” Australian Journal of Mechanical Engineering, Vol. 7, No. 1, 2009, pp. 25-32.

[18]   Y. Gu, “Meshless TL and UL Approaches for Large Deformation Analysis,” Advanced Materials Research, Vol. 139-141, 2010, pp. 893-896. Hdoi:10.4028/www.scientific.net/AMR.139-141.893

[19]   H. Gun, S. Caliskan and A. Gun, “A Meshless Formulation of Euler-Bernoulli Beam Theory for Prediction of Large Deformation,” Textile Research Journal, Vol. 81, No. 10, 2011, pp. 1075-1080. Hdoi:10.1177/0040517511398946

[20]   Q. Li and K. Lee, “An Adaptive Meshless Method for Analyzing Large Mechanical Deformation and Contacts,” Journal of Applied Mechanics, Transactions ASME, Vol. 75, No. 4, 2008, Article ID: 041014. Hdoi:10.1115/1.2912938

[21]   Q. Li and K. Lee, “An Adaptive Meshless Method for Modeling Large Mechanical Deformation and Contacts,” IEEE International Conference on Robotics and Automation, Roma, 10-14 April 2007, pp. 1207-1212.

[22]   H. Zhu, W. Liu, Y. Cai and Y. Miao, “A Meshless Local Natural Neighbor Interpolation Method for Two-Dimension Incompressible Large Deformation Analysis,” Engineering Analysis with Boundary Elements, Vol. 31, No. 10, 2007, pp. 856-862. Hdoi:10.1016/j.enganabound.2007.02.003

[23]   S. Wang, “A Large-Deformation Galerkin SPH Method for Fracture,” Journal of Engineering Mathematics, Vol. 71, No. 3, 2011, pp. 305-318. Hdoi:10.1007/s10665-011-9455-7

[24]   J. Chen, C. Pan, C. Wu and W. Liu, “Reproducing Kernel Particle Methods for Large Deformation Analysis of NonLinear Structures,” Computer Methods in Applied Mechanics and Engineering, Vol. 139, No. 1-4, 1996, pp. 195-227. Hdoi:10.1016/S0045-7825(96)01083-3

[25]   S. Jun, W. Liu and T. Belytschko, “Explicit Reproducing Kernel Particle Methods for Large Deformation Problems,” International Journal for Numerical Methods in Engineering, Vol. 41, No. 1, 1998, pp. 137-166. Hdoi:10.1002/(SICI)1097-0207(19980115)41:1<137::AID-NME280>3.0.CO;2-A

[26]   K. Liew, T. Ng and Y. Wu, “Meshfree Method for Large Deformation Analysis—A Reproducing Kernel Particle Approach,” Engineering Structures, Vol. 24, No. 5, 2002, pp. 543-551. Hdoi:10.1016/S0141-0296(01)00120-1

[27]   D. Li, J. Xu and W. Kang, “Applying Element-Free Galerkin Method to Simulate Die Forging Problems,” Advanced Materials Research, Vol. 139-141, 2010, pp. 1174-1177. Hdoi:10.4028/www.scientific.net/AMR.139-141.1174

[28]   W. Quak, A. van den Boogaard and J. Huétink, “Meshless Methods and Forming Processes,” International Journal of Material Forming, Vol. 2, No. S1, 2009, pp. 585-588.

[29]   J. Ma, X. J. Xin and P. Krishnaswami, “An Elastoplastic Meshless Integral Method Based on Regularized Boundary Integral Equation,” Computer Methods in Applied Mechanics and Engineering, Vol. 197, No. 51-52, 2008, pp. 4774-4788. Hdoi:10.1016/j.cma.2008.06.019

[30]   J. Ma, “Application of Meshless Integral Method to Metal Forming,” Proceedings of the ASME Design Engineering Technical Conference, Montreal, 15-18 August 2010, pp. 141-151.

[31]   S. N. Atluri, J. Sladeck, V. Sladeck and T. Zhu, “The Local Boundary Integral Equation (LBIE) and Its Meshless Implementation for Linear Elasticity,” Computational Mechanics, Vol. 25, No. 2-3, 2000, pp. 180-198. Hdoi:10.1007/s004660050468

[32]   A. H. Stroud and D. Secrest, “Gaussian Quadrature Formulas,” Prentice-Hall, Upper Saddle River, 1966.

[33]   Y. Y. Lu, T. Belytschko and L. Gu, “A New Implementation of the Element Free Galerkin Method,” Computer Methods in Applied Mechanics and Engineering, Vol. 113, No. 3-4, 1994, pp. 397-414. Hdoi:10.1016/0045-7825(94)90056-6

[34]   T. Belytschko, Y. Y. Lu and L. Gu, “Element Free Galerkin Method,” International Journal for Numerical Methods in Engineering, Vol. 37, No. 2, 1994, pp. 229-256. Hdoi:10.1002/nme.1620370205

[35]   L. Gavete, J. J. Benito, S. Falcon and A. Ruiz, “Implementation of Essential Boundary Conditions in a Meshless Method,” Communications in Numerical Methods. Engineering, Vol. 16, No. 6, 2000, pp. 409-421. Hdoi:10.1002/1099-0887(200006)16:6<409::AID-CNM349>3.0.CO;2-Z

[36]   T. Zhu and S. N. Atluri, “A Modified Collocation Method and a Penalty Foumulation for Enforcing the Essential Boundary Conditions in the Element Free Galerkin Method,” Computational Mechanics, Vol. 21, No. 3, 1998, pp. 211-222. Hdoi:10.1007/s004660050296

[37]   D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Marini, “Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems,” SIMA Journal on Numerical Analysis, Vol. 39, No. 5, 2002, pp. 1749-1779. Hdoi:10.1137/S0036142901384162

[38]   D. Hegen, “Element-Free Galerkin Methods in Combination with Finite Element Approaches,” Computer Methods in Applied Mechanics and Engineering, Vol. 19, No. 1, 1996, pp. 120-135.

[39]   J. Gosz and W. K. Liu, “Admissible Approximations for Essential Boundary Conditions in the Reproducing Kernel Particle Method,” Computational Mechanics, Vol. 19, No. 2, 1996, pp. 120-135. Hdoi:10.1007/BF02824850

[40]   F. C. Gunther and W. K. Liu, “Implementation of Boundary Conditions for Meshless Methods,” Computer Methods in Applied Mechanics and Engineering, Vol. 163, No. 1-4, 1998, pp. 205-230. Hdoi:10.1016/S0045-7825(98)00014-0

[41]   C. A. M. Duarte and J. T. Oden, “An h-p Adaptive Method Using Clouds,” Computer Methods in Applied Mechanics and Engineering, Vol. 139, No. 1-4, 1996, pp. 237-262. Hdoi:10.1016/S0045-7825(96)01085-7

[42]   Y. Y. Lu, T. Belytschko and M. Tabbara, “Element-Free Galerkin Method for Wave Propagation and Dynamic Fracture,” Computer Methods in Applied Mechanics and Engineering, Vol. 126, No. 1-2, 1995, pp. 131-153. Hdoi:10.1016/0045-7825(95)00804-A

[43]   X. Zhang, X. Liu, M. W. Lu and Y. Chen, “Imposition of Essential Boundary Conditions by Displacement Constraint Equations in Meshless Methods,” Communications in Numerical Methods in Engineering, Vol. 17, No. 3, 2001, 165-178. Hdoi:10.1002/cnm.395

[44]   T. Zhu and S. N. Atluri, “A Modified Collocation Method and a Penalty Foumulation for Enforcing the Essential Boundary Conditions in the Element Free Galerkin Method,” Computational Mechanics, Vol. 21, No. 3, 1998, pp. 211-222. Hdoi:10.1007/s004660050296

[45]   G. J. Wagner and W. K. Liu, “Application of Essential Boundary Conditions in Mesh-Free Methods: A Corrected Collocation Method,” International Journal for Numerical Methods in Engineering, Vol. 47, No. 8, 2000, pp. 1367-1379. Hdoi:10.1002/(SICI)1097-0207(20000320)47:8<1367::AID-NME822>3.0.CO;2-Y

[46]   C. C. Wu and M. E. Plesha, “Essential Boundary Condition Enforcement in Meshless Methods: Boundary Flux Collocation Method,” International Journal for Numerical Methods in Engineering, Vol. 53, No. 3, 2002, pp. 499514. Hdoi:10.1002/nme.267

[47]   T. Belytschko, Y. Y. Lu and L. Gu, “Element Free Galerkin Method,” International Journal for Numerical Methods in Engineering, Vol. 37, No. 2, 1994, pp. 229-256. Hdoi:10.1002/nme.1620370205

[48]   P. Krysl and T. Belytschko, “Analysis of Thin Plates by the Element-Free Galerkin Method,” Computational Mechanics, Vol. 17, No. 1, 1998, pp. 26-35.

[49]   W. K. Liu and Y. Chen, “Wavelet and Multiple Scale Reproducing Kernel Methods,” International Journal for Numerical Methods in Fluids, Vol. 21, No. 10, 1995, pp. 901-931.

[50]   N. R. Aluru, “A Reproducing Kernel Particle Method for Meshless Analysis of Microelectromechanical Systems,” Computational Mechanics, Vol. 23, No. 4, 1999, pp. 324338. Hdoi:10.1007/s004660050413

[51]   J. S. Chen, C. Pan and C. T. Wu, “A Lagrangian Reproducing Kernel Particle Method for Metal Forming Analysis,” Computational Mechanics, Vol. 22, No. 3, 1998, pp. 289-338. Hdoi:10.1007/s004660050361

[52]   J. S. Chen, C. Pan, C. T. Wu and W. K. Liu, “Reproducing Kernel Particle Methods for Large Deformation Analysis of Non-Linear Structures,” Computer Methods in Applied Mechanics and Engineering, Vol. 139, No. 1-4, 1996, pp. 195-227. Hdoi:10.1016/S0045-7825(96)01083-3

[53]   T. Zhu, J.-D. Zhang and S. N. Atluri, “A Local Boundary Integral Equation (LBIE) Method in Computational Mechanics, and a Meshless Discretization Approach,” Computational Mechanics, Vol. 21, No. 3, 1998, pp. 223-235. Hdoi:10.1007/s004660050297

[54]   J. Sladek, V. Sladeck and R. Van Keer, “Meshless Local Boundary Integral Equation for 2D Elastodynamic Problems,” International Journal for Numerical Methods in Engineering, Vol. 57, No. 2, 2003, pp. 235-249. Hdoi:10.1002/nme.675

[55]   S. Long and Q. Zhang, “Analysis of Thin Plates by the Local Boundary Integral Equation (LBIE) Method,” Engineering Analysis with Boundary Elements, Vol. 26, No. 8, 2002, pp.707-718. Hdoi:10.1016/S0955-7997(02)00025-5

[56]   T. Belytschko, W. K. Liu and B. Moran, “Nonlinear Finite Elements for Continua and Structures,” John Wiley & Sons, Ltd., Chichester, 2000.

Top