Penalized Flexible Bayesian Quantile Regression

Show more

References

[1] R. Koenker, “Quantile Regression,” Cambridge University Press, Cambridge, 2005.
doi:10.1017/CBO9780511754098

[2] K. Yu, Z. Lu and J. Stander, “Quantile Regression: Applications and Current Research Areas,” The Statistician, Vol. 52, No. 3, 2003, pp. 331-350.
doi:10.1111/1467-9884.00363

[3] R. Koenker and G. Bassett Jr., “Regression Quantiles,” Econometrica, Vol. 46, No. 1, 1978, pp. 33-50.
doi:10.2307/1913643

[4] R. Koenker and J. Machado, “Goodness of Fit and Related Inference Processes for Quantile Regression,” Journal of the American Statistical Association, Vol. 94, No. 448, 1999, pp. 1296-1310.
doi:10.1080/01621459.1999.10473882

[5] K. Yu and R. A. Moyeed, “Bayesian Quantile Regression,” Statistics and Probability Letters, Vol. 54, No. 2, 2001, pp. 437-447. doi:10.1016/S0167-7152(01)00124-9

[6] E. Tsionas, “Bayesian Quantile Inference,” Journal of Statistical Computation and Simulation, Vol. 73, No. 9, 2003, pp. 659-674. doi:10.1080/0094965031000064463

[7] K. Yu and J. Stander, “Bayesian Analysis of a Tobit Quantile Regression Model,” Journal of Econometrics, Vol. 137, No. 1, 2007, pp. 260-276.
doi:10.1016/j.jeconom.2005.10.002

[8] M. Geraci and M. Bottai, “Quantile Regression for Longitudinal Data Using the Asymmetric Laplace Distribution,” Biostatistics, Vol. 8, No. 1, 2007, pp. 140-154.
doi:10.1093/biostatistics/kxj039

[9] H. Kozumi and G. Kobayashi, “Gibbs Sampling Methods for Bayesian Quantile Regression,” Technical Report, Kobe University, Kobe, 2009.

[10] C. Reed and K. Yu, “An Efficient Gibbs Sampler for Bayesian Quantile Regression,” Technical Report, Brunel University, Uxbridge, 2009.

[11] D. F. Benoit and D. Van den Poel, “Binary Quantile Regression: A Bayesian Approach Based on the Asymmetric Laplace Distribution,” Journal of Applied Econometrics, Vol. 27, No. 7, 2012, pp. 1174-1188.
doi:10.1002/jae.1216

[12] S. Walker and B. Mallick, “A Bayesian Semi-Parametric Accelerated Failure Time Model,” Biometrics, Vol. 55, No. 2, 1999, pp. 477-483.
doi:10.1111/j.0006-341X.1999.00477.x

[13] A. Kottas and A. Gelfand, “Bayesian Semi-Parametric Median Regression Modelling,” Journal of the American Statistical Association, Vol. 96, No. 465, 2001, pp. 1458-1468. doi:10.1198/016214501753382363

[14] T. Hanson and W. O. Johnson, “Modeling Regression Error with a Mixture of Polya Trees,” Journal of the American Statistical Association, Vol. 97, No. 460, 2002, pp. 1020-1033. doi:10.1198/016214502388618843

[15] N. L. Hjort, “Topics in Nonparametric Bayesian Statistics,” In: P. J. Green, S. Richardson and N. L. Hjort, Eds., Highly Structured Stochastic Systems, Oxford University Press, Oxford, 2003, pp. 455-475.

[16] N. L. Hjort and S. Petrone, “Nonparametric Quantile Inference Using Dirichlet Processes,” In: V. Nair, Ed., Advances in Statistical Modeling and Inference: Essays in Honor of Kjell A. Doksum, World Scientific, Singapore City, 2007, pp. 463-492.
doi:10.1142/9789812708298_0023

[17] M. Taddy and A. Kottas, “A Nonparametric Model-Based Approach to Inference for Quantile Regression,” Technical Report, UCSC Department of Applied Math and Statistics, 2007.

[18] A. Kottas and C. M. Krnjaji?, “Bayesian Nonparametric Modelling in Quantile Regression,” Scandinavian Journal of Statistics, Vol. 36, No. 3, 2009, pp. 297-319.

[19] B. Reich, H. Bondell and H. Wang, “Flexible Bayesian Quantile Regression for Independent and Clustered Data,” Biostatistics, Vol. 11, No. 2, 2010, pp. 337-352.
doi:10.1093/biostatistics/kxp049

[20] Q. Li, R. Xi and N. Lin, “Bayesian Regularized Quantile Regression,” Bayesian Analysis, Vol. 5, No. 3, 2010, pp. 1-24. doi:10.1214/10-BA521

[21] R. Tibshirani, “Regression Shrinkage and Selection via the Lasso,” Journal of the Royal Statistical Society Series B, Vol. 58, No. 1, 1996, pp. 267-288.

[22] J. Fan and R. Li, “Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties,” Journal of the American Statistical Association, Vol. 96, No. 456, 2001, pp. 1348-1360. doi:10.1198/016214501753382273

[23] H. Zou, “The Adaptive Lasso and Its Oracle Properties,” Journal of the American Statistical Association, Vol. 101, No. 476, 2006, pp. 1418-1429.
doi:10.1198/016214506000000735

[24] T. Park and G. Casella, “The Bayesian Lasso,” Journal of the American Statistical Association, Vol. 103, No. 482, 2008, pp. 681-686. doi:10.1198/016214508000000337

[25] J. Bradic, J. Fan and W. Wang, “Penalized Composite Quasi-Likelihood for Ultrahigh-Dimensional Variable Selection,” Journal of Royal Statistics Society Series B, Vol. 73, No. 3, 2010, pp. 325-349.
doi:10.1111/j.1467-9868.2010.00764.x

[26] R. Koenker, “Quantile Regression for Longitudinal Data,” Journal of Multivariate Analysis, Vol. 91, No. 1, 2004, pp. 74-89. doi:10.1016/j.jmva.2004.05.006

[27] Y. Yuan and G. Yin, “Bayesian Quantile Regression for Longitudinal Studies with Non-Ignorable Missing Data,” Biometrics, Vol. 66, No. 1, 2010, pp. 105-114.
doi:10.1111/j.1541-0420.2009.01269.x

[28] H. Wang, G. Li and G. Jiang, “Robust Regression Shrinkage and Consistent Variable Selection through the LAD,” Journal of Business and Economic Statistics, Vol. 25, No. 3, 2007, pp. 347-355. doi:10.1198/073500106000000251

[29] Y. Li and J. Zhu, “L1-Norm Quantile Regressions,” Jour- nal of Computational and Graphical Statistics, Vol. 17, No. 1, 2008, pp. 1-23.

[30] Y. Wu and Y. Liu, “Variable Selection in Quantile Regression,” Statistica Sinica, Vol. 19, No. 2, 2009, pp. 801-817.

[31] R. Alhamzawi, K. Yu and D. Benoit, “Bayesian Adaptive Lasso Quantile Regression,” Statistical Modelling, Vol. 12, No. 3, 2012, pp. 279-297.
doi:10.1177/1471082X1101200304

[32] R. W. Johnson, “Fitting Percentage of Body Fat to Simple Body Measurements,” Journal of Statistics Education, Vol. 4, No. 1, 1996, pp. 236-237.

[33] X. He, “Quantile Curves without Crossing,” The American Statistician, Vol. 51, No. 2, 1997, pp. 186-192.
doi:10.1080/00031305.1997.10473959

[34] D. F. Andrews and C. L. Mallows, “Scale Mixtures of Normal Distributions,” Journal of Royal Statistics Society Series B, Vol. 36, No. 1, 1974, pp. 99-102.

[35] J. A. Hoeting, D. Madigan, A. E. Raftery and C. T. Volinsky, “Bayesian Model Averaging: A Tutorial,” Statistical Science, Vol. 14, No. 4, 1999, pp. 382-417.

[36] C. Leng, M. N. Tran and D. Nott, “Bayesian Adaptive Lasso,” Technical Report, 2010.
http://arxiv.org/PScache/arxiv/pdf/1009/1009.2300v1.pdf