AMPC  Vol.2 No.4 , December 2012
Electronic Structure of Gallium Phosphide Nanocrystals Core and (001)-(1 × 1) Oxidized Surface
ABSTRACT

The electronic structure of III-V zinc blend Gallium Phosphide nanocrystals is investigated using ab-initio density functional theory coupled with large unit cell for the core and surface parts. Two kinds of cells are investigated: multiple Bravais and multiple primitive cells. The results show that both energy gap and valence band width depend on the shape of the nanocrystal. Results also revealed that most electronic properties converge to some limit as the size of the large unit cell increases. Furthermore, the results have shown that the cohesive energy is decreasing with increasing size of nanocrystals. The core part is more degenerate, with larger energy gap and smaller valance and conduction bands than the surface.


Cite this paper
M. Abdulsattar, M. Hussein, R. Jamal and T. Kasim, "Electronic Structure of Gallium Phosphide Nanocrystals Core and (001)-(1 × 1) Oxidized Surface," Advances in Materials Physics and Chemistry, Vol. 2 No. 4, 2012, pp. 267-274. doi: 10.4236/ampc.2012.24039.
References
[1]   D. W. Plamer, “Semiconductors Information,” 2006. http://www.semiconductors.co.uk

[2]   L. T. Fu, H.-T. Cong, et al., “Fabrication and Visible Emission of Single-Crystal Diameter-Modulated Gallium Phosphide Nanochains,” Journal of Applied Physics, Vol. 107, No. 12, 2010, Article ID: 124321.

[3]   R. Kirshcman, “High Temerature Electronics,” Wiley, Hoboken, 1999.

[4]   L. E. Brus, “Electron-Electron and Electron-Hole Interactions in Small Semiconductor Crystallites: The Size Dependence of the Lowest Excited Electronic State,” Journal of Chemical Physics, Vol. 80, No. 9, 1984, pp. 4403- 4409. doi:10.1063/1.447218

[5]   M. G. Bawendi, M. L. Steigherwald and L. E. Brus, “The Quantum Mechanics of Larger Semiconductor Clusters,” Annual Review of Physical Chemistry, Vol. 41, 1990, pp. 477-496.

[6]   A. P. Alivisatos, “Perspectives on the Physical Chemistry of Semiconductor Nanocrystals,” Journal of Physical Chemistry B, Vol. 100, No. 31, 1996, pp. 13226-13239. doi:10.1021/jp9535506

[7]   R. Evarestov, M. Petrashen and E. Lodovskaya, “The Translational Symmetry in the Molecular Models of Solids,” Physica Status Solidi B, Vol. 68, No. 1, 1975, pp. 453-461.

[8]   A. Harker and F. Larkins, “A Large Unit Cell Semiempirical Molecular Orbital Approach to the Properties of Solids. I. General Theory,” Journal of Physics C: Solid State Physics, Vol. 12, No. 13, 1979, pp. 2487-2495.

[9]   I. O. Radi, M. A. Abdulsattar and A. M. Abdul-Lettif, “Semiempirical LUC-INDO Calculations on the Effect of Pressure on the Electronic Structure of Diamond,” Physica Status Solidi (b), Vol. 244, 2007, pp. 1304-1317.

[10]   N. H. Aysa, M. A. Abdulsattar and A. M. Abdul-Lettif, “Electronic Structure of Germanium Nanocrystals Core and (001)-(1 × 1) Oxidised Surface,” Micro & Nano Letters, Vol. 6, No. 3, 2011, pp. 137-140. doi:10.1049/mnl.2010.0154

[11]   M. A. Abdulsattar, “Mesos-copic Fluctuations of Electronic Structure Properties of Boron Phosphide Nano-crystals,” Electronic Materials Letters, Vol. 6, No. 3, 2010, pp, 97-101. doi:10.3365/eml.2010.09.097

[12]   M. H. Sanni, et al., Physical Review B, Vol. 76, 2007, Article ID: 035417.

[13]   H. M. Abduljalil, M. A. Abdulsattar and S. R. Al-Mansoury,” SiGe Nanocrystals Core and Surface Electronic Structure from ab Initio Large Unit Cell Calculations,” Micro & Nano Letters, Vol. 6, No. 6, 2011, p. 386. doi:10.1049/mnl.2011.0115

[14]   M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., “Gaussian 03,” Revision B. 01, Gaussian, Inc., Pittsburgh, 2003.

[15]   M. A. Abdulsattar, “Ab Initio Large Unit Cell Calculations of the Electronic Structure of Diamond Nanocrystals,” Solid State Sciences, Vol. 13, No. 5, 2011, pp. 843- 849. doi:10.1016/j.solidstatesciences.2011.03.009

[16]   J. P. Perdew, K. Burke and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters, Vol. 77, No. 18, 1996, pp. 3865-3868.

[17]   W. Kohn and I. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Physical Review, Vol. 140, No. 4A, 1965, pp. 1133-1138.

[18]   R. M. Dreizler and E. K. U. Gross, “Density Functional Theory,” Springer-Verlag, Berlin, 1990.

[19]   R. G. Parr and W. Yang, “Density Functional Theory of Atoms and Molecules,” Oxford, New York, 1989.

[20]   D. C. Langreth and M. J. Mehl, “Beyond the Local-Density Approximation in Calculations of Ground-State Electronic Properties,” Physical Review B, Vol. 28, No. 4, 1983, pp. 1809-1834. doi:10.1103/PhysRevB.28.1809

[21]   A. D. Becke, “Densi-ty-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior,” Physical Review A, Vol. 38, No. 6, 1988, pp. 3098-3100. doi:10.1103/PhysRevA.38.3098

[22]   J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, “Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation,” Physical Review B, Vol. 46, 1992, p. 6671.

[23]   J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, Physical Review B, Vol. 48, 1993, p. 4978.

[24]   J. P. Perdew and Y. Wang, Physical Review B, Vol. 45, No. 13, 1992, p. 244.

[25]   N. A. Nama, M. Abdulsattar and A. Abdul-Lettif, “Surface and Core Electronic Structure of Oxidized Silicon Nanocrystals,” Journal of Nanomaterials, Vol. 2010, 2010, Article ID: 952172.

[26]   S. Razaq, MSc. Thesis, University of Babylon, Babylon, 2010.

[27]   H. Sigg, U. Denker, M. Stoffel and O. Schmidt, PSI Scientific Report, Vol. VII, 2002.

[28]   W. C. Butterman and J. D. Jorgenson, “Mineral Commodity Profiles: Germanium,” Open-File Report 2004-1218, US Geological Survey.

[29]   G. C. McIntosh, M. Yoon, S. Berber and D. Tohmanek, “Diamond Fragments as Building Blocks of Functional Nanostructures,” Physical Review B, Vol. 70, No. 4, 2004, Article ID: 045401. doi:10.1103/PhysRevB.70.045401

 
 
Top