Back
 OPJ  Vol.2 No.4 , December 2012
Simple Method of the Formation of the Hamiltonian Matrix for Some Schrodinger Equations Describing the Molecules with Large Amplitude Motions
Abstract: A simple approach to the formation of a Hamiltonian matrix for some Schrodinger equations describing the molecules with large amplitude motions has been proposed. The algorithm involving one or several variables has been concretely defined for the basis functions represented by Fourier series and orthogonal polynomials, taking Hermitian polynomials as an example.
Cite this paper: G. Pitsevich and A. Malevich, "Simple Method of the Formation of the Hamiltonian Matrix for Some Schrodinger Equations Describing the Molecules with Large Amplitude Motions," Optics and Photonics Journal, Vol. 2 No. 4, 2012, pp. 332-337. doi: 10.4236/opj.2012.24041.
References

[1]   J. T. Hougen, “A Group-Theoretical Treatment of Electronic, Vibrational, Torsional and Rotational Motions in the Dimethy-lacetylene Molecule,” Canadian Journal of Physics, Vol. 42, No. 10, 1964, pp. 1920-1937. doi:10.1139/p64-182

[2]   N. Moazzen-Ahmadi, H. P. Gush, M. Halpern, H. Jagannath, A. Leung and I. Ozier, “The Torsional Spectrum of CH3CH3,” Journal of Chemical Physics, Vol. 88, No. 2, 1988, pp. 563-577. doi:10.1063/1.454183

[3]   J. M. Fernandez-Sanchez, A. G. Valdenebro and S. Montero, “The Torsional Raman Spectra of C2H6 and C2D6,” Journal of Chemical Physics, Vol. 91, No. 6, 1989, pp. 3327-3334. doi:10.1063/1.456908

[4]   N. Moazzen-Ahmadi, A. R. W. McKellar, J. W. C. Johns and I. Ozier, “Intensity Analysis of the Torsional Spectrum of CH3CH3,” Journal of Chemical Physics, Vol. 97, No. 6, 1992, pp. 3981-3988. doi:10.1063/1.462937

[5]   K. S. Pitzer and W. D. Gwinn, “Energy Levels and Thermodynamic Functions for Molecules with Internal Rotation I. Rigid Frame with Attached Tops,” Journal of Chemical Physics, Vol. 10, No. 7, 1942, pp. 428-440. doi:10.1063/1.1723744

[6]   J. D. Swalen and D. R. Her-schbach, “Internal Barrier of Propylene Oxide from the Micro-wave Spectrum,” Journal of Chemical Physics, Vol. 27, No. 1, 1957, pp. 100108. doi:10.1063/1.1743645

[7]   R. W. Kilb, C. C. Lin and E. B. Wilson, “Calculation of Energy Levels for Internal Torsion and Over-All Rotation. II. CH3CHO Type Molecules; Acetaldehyde Spectra,” Journal of Chemical Physics, Vol. 26, No. 6, 1957, pp. 1695-1703. doi:10.1063/1.1743607

[8]   R. Subramanian, S. E. Novick and R. K. Bohn, “Torsional Analysis of 2-Butynol,” Journal of Molecular Spectroscopy, Vol. 222, No. 1, 2003, pp. 57-62. doi:10.1016/S0022-2852(03)00170-X

[9]   D. A. Shea, L. Goodman and M. G. White, “Acetone n-Radical Cation Internal Rotation Spectrum: The Torsional Potential Surface,” Journal of Chemical Physics, Vol. 112, No. 6, 2000, pp. 2762-2768. doi:10.1063/1.480850

[10]   E. V. Ivash and D. M. Dennison, “The Methyl Alcohol Molecule and Its Microwave Spectrum,” Journal of Chemical Physics, Vol. 21, No. 10, 1953, pp.1804-1816. doi:10.1063/1.1698668

[11]   K. T. Hecht and D. M. Dennison, “Hindered Rotation in Molecules with Relatively High Potential Barriers” Journal of Chemical Physics, Vol. 26, No. 1, 1957, pp. 31-47. doi:10.1063/1.1743262

[12]   G. А. Pitsevich and M. Shunda-lau, “Computer Simulation of the Effect Exerted by Argon Matrix on the Internal Rotation Barriers and Torsional States of Methanol Molecule” Journal of Spectroscopy and Dynamics, Vol. 2, No. 3, 2012, p. 15 http://www.simplex-academic-publishers.com/jsd.aspx

 
 
Top