Back
 OPJ  Vol.2 No.4 , December 2012
Propagation of Modified Bessel-Gaussian Beams in a Misaligned Optical System
Abstract: The formalism of generalized diffraction integral for paraxial misaligned optical systems is used to investigate the propagation of the Modified Bessel-Gaussian (MBG) beam through a misaligned thin lens. The properties of the propagation of MBG beam traveling through this misaligned ABCD optical system are discussed. A special case of misaligned circular thin lens is illustrated analytically and numerically. The shape of the MBG beam at the exit of the misaligned optical system is unchanged; however the center of the beam is shifted from the propagation axis in correlated manner with the design parameters of the optical system.
Cite this paper: L. Ez-Zariy, H. Nebdi, E. Bentefour and A. Belafhal, "Propagation of Modified Bessel-Gaussian Beams in a Misaligned Optical System," Optics and Photonics Journal, Vol. 2 No. 4, 2012, pp. 318-325. doi: 10.4236/opj.2012.24039.
References

[1]   J. Yin, Y. Zhu, W. Jhe and Y. Wang, “Atom Guiding and Cooling in a Dark Hollow Laser Beam,” Physical Review A, Vol. 58, No. 1, 1998, pp. 509-513. doi:/10.1103/PhysRevA.58.509

[2]   J. P. Yin, W. J. Gao, H. F. Wang, Q. Long and H. Z. Wang, “Generations of Dark Hollow Beams and Their Applications in Laser Cooling of Atoms and All Optical-Type Bose-Einstein Condensation,” Chinese Physics, Vol. 11, No. 11, 2002, pp. 1157-1169. doi:/10.1088/1009-1963/11/11/312

[3]   H. T. Eyyuboglu and F. Hardala?, “Propagation of Modified Bessel-Gaussian Beams in Turbulence,” Optics & Laser Technology, Vol. 40, No. 2, 2008, pp. 343-351. doi:/10.1016/j.optlastec.2007.06.006

[4]   H. T. Eyyuboglu, Y. Baykal, E. Sermutlu, O. Korotkova and Y. Cai, “Scintillation Index of Modified BesselGaussian Beams Propagating in Turbulent Media,” Journal of the Optical Society of America, Vol. 26, No. 2, 2009, pp. 387-394. doi:/10.1364/JOSAA.26.000387

[5]   S. A. Ponomarenko, “A Class of Partially Coherent Beams Carrying Optical Vortices,” Journal of the Optical Society of America, Vol. 18, No. 1, 2001, pp. 150-156. doi:/10.1364/JOSAA.18.000150

[6]   L. Wang, X. Wang and B. Lü, “Propagation Properties of Partially Coherent Modified Bessel–Gauss Beams,” Optik, Vol. 116, No. 2, 2005, pp. 65-70. doi:/10.1016/j.ijleo.2004.11.006

[7]   Z. H. Gao and B. D. Lü, “Partially Coherent Nonparaxial Modified Bessel–Gauss Beams,” Chinese Physics, Vol. 15, No. 2, 2006, pp. 334-339. doi:/10.1088/1009-1963/15/2/018

[8]   L. Wang, M. Li, X. Wang and Z. Zhang, “Focal Switching of Partially Coherent Modified Bessel-Gaussian Beams Passing through an Astigmatic Lens with Circular Aperture,” Optics & Laser Technology, Vol. 41, No. 5, 2009, pp. 586-589. doi:/10.1016/j.optlastec.2008.10.008

[9]   K. C. Zhu, X. Y. Li, X. J. Zheng and H. Q. Tang, “Nonparaxial Propagation of Linearly Polarized Modified Bessel-Gaussian Beams and Phase Singularities of the Electromagnetic Field Components,” Applied Physics B: Lasers and Optics, Vol. 98, No. 2-3, 2010, pp. 567-572. doi:/10.1007/s00340-009-3807-2

[10]   C. Ding, L. Pan and B. Lü, “Changes in the State of Polarization of Apertured Stochastic Electromagnetic Modified Bessel-Gauss Beams in Free-Space Propagation,” Applied Physics B: Lasers and Optics, Vol. 99, No. 1-2, 2010, pp. 307-315. doi:/10.1007/s00340-009-3818-z

[11]   A. A. A. Ebrahim, L. Ez-zariy and A. Belafhal, “Propagation of Modified Bessel-Gaussian Beams through an Annular Apertured Paraxial ABCD Optical System,” Physical and Chemical News, Vol. 61, 2011, pp. 52-58.

[12]   G. Ding and B. Lu, “Decentered Twisted Gaussian SchellModel Beams and Their Propagation through a Misaligned First-Order Optical System,” Optical and Quantum Electronics, Vol. 35, No. 2, 2003, pp. 91-100. doi:/10.1023/A:1022478608090

[13]   M. Shen, S. Wang and D. Zhao, “Propagation of Flattened Gaussian Beams Passing through a Misaligned Optical System with Finite Aperture,” Optik, Vol. 115, No. 5, 2004, pp. 193-196. doi:/10.1078/0030-4026-00346

[14]   J. Gu, D. Zhao and Z. Mei, “The Relative Phase Shift of Off-Axial Gaussian Beams through an Apertured and Misaligned Optical System,” Optik, Vol. 115, No. 4, 2004, pp. 187-191. doi:/10.1016/S0030-4026(08)70009-3

[15]   Y. Cai and L. Zhang, “Propagation of a Hollow Gaussian Beam through a Paraxial Misaligned Optical System,” Optics Communications, Vol. 265, No. 2, 2006, pp. 607615. doi:/10.1016/j.optcom.2006.03.070

[16]   Y. Cai and X. Lu, “Propagation of Bessel and Bessel-Gaussian Beams through an Unapertured or apertured Misaligned Paraxial Optical Systems,” Optics Communications, Vol. 274, No. 1, 2007, pp. 1-7. doi:/10.1016/j.optcom.2007.01.058

[17]   C. Zhao, L. Wang, X. Lu and H. Chen, “Propagation of High-Order Bessel-Gaussian Beam through a Misaligned First-Order Optical System,” Optics & Laser Technology, Vol. 39, No. 6, 2007, pp. 1199-1203. doi:/10.1016/j.optlastec.2006.08.015

[18]   H. T. Eyyuboglu, “Propagation Aspects of MathieuGaussian Beams in Turbulence,” Applied Physics B: Lasers and Optics, Vol. 91, No. 3-4, 2008, pp. 629-637. doi:/10.1007/s00340-008-3020-8

[19]   A. Chafiq, Z. Hricha and A. Belafhal, “Propagation of Generalized Mathieu-Gauss Beams through Paraxial Misaligned Optical Systems,” Optics Communications, Vol. 282, No. 19, 2009, pp. 3934-3939. doi:/10.1016/j.optcom.2009.03.062

[20]   A. Belafhal, M. Yaalou and S. Hennani, “Propagation of Bessel-Modulated Gaussian Beams through a Misaligned First-Order Optical System,” Physical and Chemical News, Vol. 61, 2011, pp. 34-43.

[21]   A. Belafhal and S. Hennani, “A Note on Some Integrals Used in Laser Field Involving the Product of Bessel Functions,” Physical and Chemical News, Vol. 61, 2011, pp. 59-62.

[22]   S. Wang and L. Ronchi, “III Principles and Design of Optical Arrays,” Progress in Optics, Vol. 25, 1988, pp. 279-348.

[23]   I. S. Gradshteyn and I. M. Ryzhik, “Tables of Integrals, Series, and Products,” 5th Edition, Academic Press, New York, 1994.

 
 
Top