Bounds for Goal Achieving Probabilities of Mean-Variance Strategies with a No Bankruptcy Constraint

Show more

References

[1] X. Li and X. Y. Zhou, “Continuous-Time Mean-Variance Efficiency: The 80% Rule,” Annals of Applied Probability, Vol. 16, No. 4, 2006, pp. 1751-1763.
doi:10.1214/105051606000000349

[2] A. Scott and F. Watier, “Goal Achieving Probabilities of Constrained Mean-Variance Strategies,” Statistics & Probability Letters, Vol. 81, No. 8, 2011, pp. 1021-1026.
doi: 10.1016/j.spl.2011.02.023

[3] T. R. Bielecki, H. Jin, S. R. Pliska and X. Y. Zhou, “Continuous-Time Mean-Variance Portfolio Selection with Bankruptcy Prohibition,” Mathematical Finance, Vol. 15, No. 2, 2005, pp. 213-244.
doi:10.1111/j.0960-1627.2005.00218.x

[4] E. Di Nardo, A. G. Nobile, E. Pirozzi and L. M. Ricciardi, “A Computational Approach to First-Passage-Time Problems for Gauss-Markov Processes,” Advances in Applied Probability, Vol. 33, No. 2, 2001, pp. 453-482.
doi:10.1239/aap/999188324

[5] M. Lopez and G. Still, “Semi-Infinite Programming,” European Journal of Operational Research, Vol. 180, No. 2, 2007, pp. 491-518. doi:10.1016/j.ejor.2006.08.045

[6] R. Reemtsen and J.-J. Rückmann, “Semi-Infinite Programming,” Kluwer Academic Publishers, The Netherlands, 1998.