TEL  Vol.2 No.5 , December 2012
On the Concavity of the Consumption Function with a Quadratic Utility under Liquidity Constraints
ABSTRACT
This paper demonstrates the concavity of the consumption function of infinitely living households under liquidity constraints who are not prudent—i.e. with a quadratic utility. The concavity of the consumption function is closely related to the 3-convexity of the value function.



Cite this paper
S. Nishiyama and R. Kato, "On the Concavity of the Consumption Function with a Quadratic Utility under Liquidity Constraints," Theoretical Economics Letters, Vol. 2 No. 5, 2012, pp. 566-569. doi: 10.4236/tel.2012.25104.
References
[1]   A. Deaton, “Saving and Liquidity Constraints,” Econometrica, Vol. 59, No. 5, 1991, pp. 1221-1248. doi:10.2307/2938366

[2]   C. D. Carroll and M. S. Kimball, “Liquidity Constraints and Precautionary Saving,” NBER Working Paper 8496, National Bureau of Economic Research, Inc., 2001.

[3]   N. Levinson, “Generalization of an Inequality of Ky Fan,” Journal of Mathematical Analysis and Applications, 8, 1964, pp. 133-134. doi:10.1016/0022-247X(64)90089-7

[4]   C. D. Carroll and M. S. Kimball, “On the Concavity of the Consumption Function,” Econometrica, Vol. 64, No. 4, 1996, pp. 981-992. doi:10.2307/2171853

[5]   N. L. Stokey, R. E. Lucas Jr. and E. C. Prescott, “Recursive Methods in Economic Dynamics,” Harvard University Press, Cambridge, 1989.

[6]   D. Chmielewski and V. Manousiouthakis, “On Constrained Infinite-time Linear Quadratic Optimal Control, Systems and Control Letters, Vol. 29, No. 3, 1996, pp. 121-129. doi:10.1016/S0167-6911(96)00057-6

[7]   J. E. Pecaric, F. Proschan and Y. L. Tong, “Convex Functions, Partial Orderings, and Statistical Applications Academic Press, San Diego, 1992.

 
 
Top