Back
 CSTA  Vol.1 No.3 , December 2012
Conditions for Singularity of Twist Grain Boundaries between Arbitrary 2-D Lattices
Abstract: We have shown that the expression =2tan-1/ derived by Ranganathan to calculate the angles at which there exists a CSL for rotational interfaces in the cubic system can also be applied to general (oblique) two-dimensional lattices provided that the quantities 2 and /cos() are rational numbers, with =|b|/|a| and is the angle between the basis vectors a and b. In contrast with Ranganathan’s results, N; given by N=tan2() needs no longer be an integer. Specifically, vectors a and b must have the form a=(1,0); b=(r,tan) where r is an arbitrary rational number. We have also shown that the interfacial classification of cubic twist interfaces based on the recurrence properties of the O-lattice remains valid for arbitrary two-dimensional interfaces provided the above requirements on the lattice are met.
Cite this paper: D. Romeu, J. Aragón, G. Aragón-González, M. Rodríguez-Andrade and A. Gómez, "Conditions for Singularity of Twist Grain Boundaries between Arbitrary 2-D Lattices," Crystal Structure Theory and Applications, Vol. 1 No. 3, 2012, pp. 52-56. doi: 10.4236/csta.2012.13010.
References

[1]   S. Ranganathan, “On the Geometry of Coincidence-Site Lattices,” Acta Crystallographica, Vol. 21, Part 2, 1966, pp. 197-199. doi:10.1107/S0365110X66002615

[2]   D. Romeu and A. Gómez, “Recurrence Properties of O-Lattices and the Classification of Grain Boundaries,” Acta Crystallographica, Vol. 62, Part 5, 2006, pp. 411-412. doi:10.1107/S0108767306025293

[3]   W. Bollmann, “Crystal Defects and Crystalline Interfaces,” Springer, Berlin, 1970. doi:10.1007/978-3-642-49173-3

[4]   C. Zorrilla and D. Romeu, “Symmetry Classification of Cubic Twist Boundaries,” Journal of Non-Crystalline Solids, Vol. 329, No. 1-3, 2003, pp. 119-122. doi:10.1016/j.jnoncrysol.2003.08.024

[5]   D. Romeu, “Interfaces and Quasicrystals as Competing Crystal Lattices: Towards a Crystallographic Theory of Interfaces,” Physical Review B, Vol. 67, No. 2, 2003, pp. 24202-24214. doi:10.1103/PhysRevB.67.024202

[6]   R. C. Pond and W. Bollmann, “The Symmetry and Interfacial Structure of Bicrystals,” Philosophical Transactions of the Royal Society, Vol. 292, No. 1395, 1979, pp. 449-472. doi:10.1098/rsta.1979.0069

[7]   R. C. Pond and D. S. Vlachavas, “Bicrystallography,” Proceedings of the Royal Society, Vol. 386, No. 1790, 1983, pp. 95-143. doi:10.1098/rspa.1983.0028

[8]   A. P. Sutton and V. Vitek, “On the Coincidence Site Lattice and DSC Dislocation Network Model of High Angle Grain Boundary Structure,” Scripta Metallurgica, Vol. 14, No. 1, 1980, pp. 129-132. doi:10.1016/0036-9748(80)90140-4

[9]   A. P. Sutton and V. Vitek, “On the Structure of Tilt Grain Boundaries in Cubic Metals II: Asymmetrical Tilt Boundaries,” Philosophical Transactions of the Royal Society, Vol. 309, No. 1506, 1983, pp. 37-54. doi:10.1098/rsta.1983.0021

[10]   H. Grimmer, W. Bollmann and D. H. Warrington, “Coincidence-Site Lattices and Complete Pattern-Shift Lattices in Cubic Crystals,” Acta Crystallographica, Vol. A30, Part 2, 1974, pp. 197-207.

 
 
Top