JBiSE  Vol.5 No.12 , December 2012
In vitro measurement of tibiofemoral kinematics after patient-specific unicompartmental knee replacement
ABSTRACT
It is suggested that unicompartmental knee replacement (UKR) offers the potential to restore normal knee kinematics better than total knee replacement (TKR) because of retaining the cruciate ligaments, and better preservation of the overall geometry. It was hypothesized that patient-specific UKR would restore normal knee kinematics even better because of a customised articular shape. A comparative kinematics study was conducted on three cadaver limbs using two different test setups, a loaded ankle rig and an unloaded ankle rig. Kinematics was compared between a patient-specific UKR and a conventional fixed-bearing UKR. Both the UKRs showed similar kinematic patterns to the normal knee using both the test apparatus. The patient-specific UKR showed good results and with the other benefits it shows potential to dramatically improve clinical outcomes of knee replacement surgery.

Cite this paper
van den Heever, D. , Scheffer, C. , Erasmus, P. and Dillon, E. (2012) In vitro measurement of tibiofemoral kinematics after patient-specific unicompartmental knee replacement. Journal of Biomedical Science and Engineering, 5, 729-736. doi: 10.4236/jbise.2012.512091.
References
[1]   Bi??evi? M., Hebibovi? M. and Smrke D. (2005) Variations of femoral condyle shape. Collegium Antropolo- gicum, 2, 409-414.

[2]   Varadarajan K., Harry R., Johnson T. and Li G. (2009) Can in vitro systems capture the characteristic differences between the flexion-extension kinematics of the healthy and TKA knee? Medical Engineering & Physics, 31, 899- 906. doi:10.1016/j.medengphy.2009.06.005

[3]   Victor J., Van Glabbeek F., Vander Sloten J., Parizel P.M., Somville J. and Bellemans J. (2009) An experimental model for kinematic analysis of the knee. The Journal of Bone and Joint Surgery, 91, 150-163. doi:10.2106/JBJS.I.00498

[4]   Victor J., Labey L., Wong P., Innocenti B. and Bellemans J. (2010) The influence of muscle load on tibiofemoral knee kinematics. Journal of Orthopaedic Research, 28, 419-428.

[5]   Hill P.F., Vedi V., Williams A., Iwaki H., Pinskernova V. and Freeman M.A. (2000) Tibiofemoral movement 2: The loaded and unloaded living knee studied by MRI. The Journal of Bone and Joint Surgery, 82, 1196-1198. doi:10.1302/0301-620X.82B8.10716

[6]   Nakagawa S., Kadoya Y., Todo S., Kobayashi A., Sakamoto H., Freeman M.A., et al. (2000) Tibiofemoral movement 3: Full flexion in the living knee studied by MRI. The Journal of Bone and Joint Surgery, 82, 1199- 1200. doi:10.1302/0301-620X.82B8.10718

[7]   Johal P., Williams A., Wragg P., Hunt D. and Gedroyc W. (2005) Tibio-femoral movement in the living knee. A study of weight bearing and non-bearing knee kinematics using “interventional” MRI. Journal of Biomechanics, 38, 269-276. doi:10.1016/j.jbiomech.2004.02.008

[8]   Komistek R.D., Dennis D.A. and Mahfouz M. (2003) In vivo fluoroscopic analysis of the normal human knee. Clinical Orthopaedics and Related Research, 410, 69-81. doi:10.1097/01.blo.0000062384.79828.3b

[9]   Lu T.W., Tsai T.Y., Kuo M.Y., Hsu H.C. and Chen H.L. (2008) In vivo three-dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy. Medi- cal Engineering & Physics, 30, 1004-1012. doi:10.1016/j.medengphy.2008.03.001

[10]   K?rrholm J., Brandsson S. and Freeman M.A. (2000) Tibiofemoral movement 4: Changes of axial rotation caused by forced rotation at the weight-bearing knee studied by RSA. The Journal of Bone and Joint Surgery, 82, 1201-1203. doi:10.1302/0301-620X.82B8.10715

[11]   Uvehammer J., K?rrholm J. and Brandsson S. (2000a) In vivo kinematics of total knee arthroplasty: Concave versus posterior-stabilised tibial joint surface. The Journal of Bone and Joint Surgery, 82, 499-505. doi:10.1302/0301-620X.82B4.10651

[12]   Uvehammer J., K?rrholm J., Brandsson S., Herberts P., Carlsson L., Karlsson J., et al. (2000b) In vivo kinematics of total knee arthroplasty: Flat compared with concave tibial joint surface. Journal of Orthopaedic Research, 18, 856-864. doi:10.1002/jor.1100180603

[13]   D’Lima D.D., Trice M., Urquhart A.G. and Colwell Jr C.W. (2000) Comparison between the kinematics of fixed and rotating bearing knee prostheses. Clinical Orthopaedics and Related Research, 380, 151-157. doi:10.1097/00003086-200011000-00020

[14]   Patil S., Colwell Jr C.W., Ezzet K.A. and D’Lima D.D. (2005) Can normal knee kinematics be restored with unicompartmental knee replacement? Journal of Bone and Joint Surgery, 87, 332-338. doi:10.2106/JBJS.C.01467

[15]   Coughlin K.M., Incavo S.J., Churchill D.L. and Beynnon B.D. (2003) Tibial axis and patellar position relative to the femoral epicondylar axis during squatting. The Journal of Arthroplasty, 18, 1048-1055. doi:10.1016/S0883-5403(03)00449-2

[16]   Lo J., Müller O., Wünschel M., Bauer S. and Wülker N. (2008) Forces in anterior cruciate ligament during simulated weight-bearing flexion with anterior and internal rotational tibial load. Journal of Biomechanics, 41, 1855- 1861. doi:10.1016/j.jbiomech.2008.04.010

[17]   Li G., Zayontz S., DeFrate L.E., Most E., Suggs J.F. and Rubash H.E. (2004) Kinematics of the knee at high flexion angles: An in vitro investigation. Journal of Orthopaedic Research, 22, 90-95. doi:10.1016/S0736-0266(03)00118-9

[18]   Most E., Axe J., Rubash H. and Li G. (2004) Sensitivity of the knee joint kinematics calculation to selection of flexion axes. Journal of Biomechanics, 37, 1743-1748. doi:10.1016/j.jbiomech.2004.01.025

[19]   Li G., Rudy T.W., Sakane M., Kanamori A., Ma C.B. and Woo S.L. (1999) The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL. Journal of Biomechanics, 32, 395- 400. doi:10.1016/S0021-9290(98)00181-X

[20]   Krevolin J. (2003) Specimen-specific, three dimensional knee joint mechanics: Normal and reconstructe. Ph.D. Thesis, University of Texas, Austin.

[21]   Merican A.M. and Amis A.A. (2009) Iliotibial band tension affects patellofemoral and tibiofemoral kinematics. Journal of Biomechanics, 42, 1539-1546. doi:10.1016/j.jbiomech.2009.03.041

[22]   Bull A.M.J., Kessler O., Alam M. and Amis A.A. (2008) Changes in knee kinematics reflect the articular geometry after arthroplasty. Clinical Orthopaedics and Related Re- search, 466, 2491-2499. doi:10.1007/s11999-008-0440-z

[23]   Rovick J.S., Reuben J.D., Schrager R.J. and Walker P.S. (1991) Relation between knee motion and ligament length patterns. Clinical Biomechanics, 6, 213-220. doi:10.1016/0268-0033(91)90049-V

[24]   Iwaki H., Pinskernova V. and Freeman M.A. (2000) Ti- biofemoral movement 1: The shape and relative movements of the femur and tibia in the unloaded cadaver knee. The Journal of Bone and Joint Surgery, 82, 1189-1195. doi:10.1302/0301-620X.82B8.10717

[25]   Hallen L.G. and Lindahl O. (1966) The “screw-home” movement in the knee joint. Acta Orthopaedica Scandi-navica, 37, 97-106. doi:10.3109/17453676608989407

[26]   Most E., Li G., Schule S., Sultan P., Park S., Zayontz S., et al. (2003) The kinematics of fixed- and mobile-bearing total knee arthroplasty. Clinical Orthopaedics and Related Research, 416, 197-207. doi:10.1097/01.blo.0000092999.90435.d1

[27]   Robinson B.J., Rees J.L., Price A.J., Beard D.J. and Murray D.M. (2002) A kinematic study of lateral unicompartmental arthroplasty. The Knee, 9, 237-240. doi:10.1016/S0968-0160(02)00039-X

[28]   Pandit H., van Duren B.H., Gallagher J.A., Beard D.J., Dodd C.A., Gill H.S., et al. (2008) Combined anterior cruciate reconstruction and Oxford unicompartmental knee arthroplasty: In vivo kinematics. The Knee, 15, 101- 106. doi:10.1016/j.knee.2007.11.008

[29]   Price A.J., Rees J.L., Beard D.J., Gill R.H., Dodd C.A. and Murray D.M. (2004) Sagittal plane kinematics of a mobile-bearing unicompartmental knee arthroplasty at 10 years: A comparative in vivo fluoroscopic analysis. The Journal of Arthroplasty, 19, 590-597. doi:10.1016/j.arth.2003.12.082

[30]   Akizuki S., Mueller J.K., Horiuchi H., Matsunaga D., Shibakawa A. and Komistek R.D. (2009) In vivo determination of kinematics for subjects having a zimmer unicompartmental high flex knee system. The Journal of Arthroplasty, 24, 963-971. doi:10.1016/j.arth.2008.06.013

[31]   Koeck F.X., Beckmann J., Luring C., Rath B., Grifka J. and Basad E. (2011) Evaluation of implant position and knee alignment after patient-specific unicompartmental knee arthroplasty. The Knee, 18, 294-299. doi:10.1016/j.knee.2010.06.008

[32]   Kennedy W.R. and White R.P. (1987) Unicompartmental arthroplasty of the knee. Postoperative alignment and its influence on overall results. Clinical Orthopaedics and Related Research, 221, 278-285.

[33]   Whiteside L.A. and McCarthy D.S. (1992) Laboratory evaluation of alignment and kinematics in a unicompart-mental knee arthroplasty inserted with intramedullary instrumentation. Clinical Orthopaedics and related Research, 274, 238-247.

[34]   van den Heever D., Scheffer C., Erasmus P. and Dillon E. (2011) Contact stresses in a patient-specific unicompartmental knee replacement. Clinical Biomechanics, 26, 159-166. doi:10.1016/j.clinbiomech.2010.09.007

[35]   Gunther T.V., Murray D.W., Miller R., Wallace D.A., Carr A.J., O’Connor J.J., et al. (1996) Lateral Unicom- partmental arthroplasty with the Oxford meniscal knee. The Knee, 3, 33-39. doi:10.1016/0968-0160(96)00208-6

[36]   Ashraf T., Newman J.H., Evans R.L. and Ackroy C.E. (2002) Lateral unicompartmental knee replacement: Survivorship and clinical experience over 21 years. Journal of Bone and Joint Surgery, 84, 1126-1130. doi:10.1302/0301-620X.84B8.13447

[37]   Pandit H., Jenkins C., Beard D.J., Price A.J., Gill H.S., Dodd C.A., et al. (2010) Mobile bearing dislocation in lateral unicompartmental knee replacement. The Knee, 17, 392-397. doi:10.1016/j.knee.2009.10.007

[38]   D’Lima D.D., Poole C., Chadha H., Hermida J.C., Mahar A. and Colwell Jr C.W. (2001) Quadriceps moment arm and qaudriceps forces after total knee arthroplasty. Clinical Orthopaedics and Related Research, 392, 213-220. doi:10.1097/00003086-200111000-00026

 
 
Top