JBiSE  Vol.5 No.12 , December 2012
Characterization and quantification of gait deficits within gait phases using fuzzy-granular computing
ABSTRACT
People with neurological disorders like Cerebral Palsy (CP) and Multiple Sclerosis (MS) suffer associated functional gait problems. The symptoms and sign of these gait deficits are different between subjects and even within a subject at different stage of the disease. Identifying these gait related abnormalities helps in the treatment planning and rehabilitation process. The current gait assessment process does not provide very specific information within the seven gait phases. The objective of this study is to investigate the possible application of granular computing to quantify gait parameters within the seven gait phases. In this process we applied fuzzy-granular computing on the vertical ground reaction force (VGRF) and surface electromyography (sEMG) data to obtain respective characteristic values for each gait phase. A fuzzy similarity (FS) measure is used to compare patient values with age and sex matched control able-bodied group. We specifically applied and tested this approach on 10 patients (4 Cerebral Palsy and 6 Multiple Sclerosis) to identify possible gait abnormalities. Different FS values for VGRF for right and left leg is observed. The VGRF analysis shows smaller FS values during the swing phase in CP and MS subjects that are evidence of associated stability problem. Similarly, FS values for muscle activates of the four-selected muscle display a broad range of values due to difference between subjects. Degraded FS values for different muscles at different stage of the gait cycle are reported. Smaller FS values are sign of abnormal activity of the respective muscles. This approach provides individual centered and very specific information within the gait phases that can be employed for diagnosis, treatment and rehabilitation process.

Cite this paper
Bogale, M. , Yu, H. , Sarkodie-Gyan, T. and Abdelgawad, A. (2012) Characterization and quantification of gait deficits within gait phases using fuzzy-granular computing. Journal of Biomedical Science and Engineering, 5, 720-728. doi: 10.4236/jbise.2012.512090.
References
[1]   Whittle, M.W. (2007) Gait analysis an introduction. 4th Edition, Butterworth-Heineman, Elsevier, Amsterdam.

[2]   Shakespeare, D., Boggild, M. and Young, C.A. (2003) Anti-spasticity agents for multiple sclerosis. Cochrane Database of Systematic Reviews, 4.

[3]   Martin, C.L., Philips, B.A., Kilpatrick, T.J., Butzkueven, H., Tubridy, N., MacDonald, E. and Galea, M.P. (2006) Gait and balance impairment in early multiple sclerosis in the absence of clinical disability. Multiple Sclerosis, 12, 620-628. doi:10.1177/1352458506070658

[4]   Sosnoff, J.J., Sandroff, B.M. and Motl, R.W. (2012) Quantifying gait abnormalities in persons with multiple sclerosis with minimal disability. Gait & Posture, 36, 154-156. doi:10.1016/j.gaitpost.2011.11.027

[5]   Crenshaw, S.J., Royer, T.D., Richards, J.G. and Huson, D. J. (2006) Gait variability in people with multiple sclerosis. Multiple Sclerosis, 12, 613-619. doi:10.1177/1352458505070609

[6]   Wurdeman, S.R., Hui-singa, J.M., Filipi, M. and Stergiou, N. (2011) Multiple sclerios affects the frequency content in the vertical ground reaction forces during walking. Clinical Biomechanics, 26, 207-212. doi:10.1016/j.clinbiomech.2010.09.021

[7]   Lee, E.H., Goh, J.C. and Bose, K. (1992) Value of gait analysis in the assess-ment of surgery in cerebral palsy. Archive of Physical Medicine and Rehabilitation, 73, 642-646.

[8]   DeLuca, P.A., Davis, R.B., Ounpup, S. and Rose, S.R. (1997) Alterations in surgical decision making in patient with cerebral palsy based on three-dimensional gait analysis. Journal of Pediatric Ortho-paedics, 17, 608-614.

[9]   Filho, M.C., Yoshida, R., Carvalho, W., Stein, H.E. and Nova, N.F. (2008) Are recommendations from three-dimensional gait analysis associated with better postopera- tive outcomes in patients with cerebral palsy. Gait & Posture, 28, 316-322. doi:10.1016/j.gaitpost.2008.01.013

[10]   Kawamura, C.M., Filho, M.C., Barreto, M.M., Asa, S.K., Juliano, Y. and Novo, N.F. (2007) Comparison between visual and three-dimensional gait analysis in patients with spastic diplegic cerebral palsy. Gait & Posture, 25, 18-24. doi:10.1016/j.gaitpost.2005.12.005

[11]   Chang, F.M., Hodes, J.T., Flynn, K.M. and Carollo, J.J. (2010) The role of gait analysis in treating gait abnormalities in cerebral palsy. Orthopedic Clinics of North America, 41, 489-506. doi:10.1016/j.ocl.2010.06.009

[12]   Carriero, A., Zavatsky, A., Stebbins, J., Theologis, T. and Shefelbine, S.J. (2009) Determination of gait patterns in children with spastic diplegic cerebral palsy using principal components. Gait & Posture, 29, 71-75. doi:10.1016/j.gaitpost.2008.06.011

[13]   Bohm, H. and Do-derlein, L. (2012) Gait asymmetries in children with cerebral palsy: Do they deteriorate with running. Gait & Posture, 35, 322-327. doi:10.1016/j.gaitpost.2011.10.003

[14]   Lauer, R.T., Stack-house, C., Shewokis, P.A. and Smith, B.T. (2005) Assessment of wavelet analysis of gait in children with typical development and cerebral palsy. Journal of Biomechanics, 38, 1351-1357. doi:10.1016/j.jbiomech.2004.07.002

[15]   Gestel, L.V., Laet, T.D., Lello, E.D., Bruyninckx, H., Molenaers, G., Van Campenhout, A., Aertbeli?n, E., Schwartz, M., Wambacq, H., De Cock, P. and Desloovere, K. (2011) Probabilistic gait classification in children with cerebral palsy. A Bayesian Approach Research in Developmental Disabilities, 32, 2542-2552.

[16]   Toro, B., Nester, C.J. and Farren, P.C. (2007) Cluster analysis for the extraction of Sagital gait patterns in children with cerebral palsy. Gait and Posture, 25, 157-165. doi:10.1016/j.gaitpost.2006.02.004

[17]   O’Malley, M.J., Abel, M. and Damiano, D. (1997) Fuzzy clustering of children with cerebral palsy based on temporal-distance gait parameters. IEEE Transactions on Rehabilitation Engineering, 5, 300-309. doi:10.1109/86.650282

[18]   Granata, K.P., Padua, D.A. and Abeel, M.F. (2004) Repeatability of surface EMG during gait in children. Gait & Posture, 22, 346-350. doi:10.1016/j.gaitpost.2004.11.014

[19]   Yu, H., Alaqtash, M., Spier, E. and Sarkodie-Gyan, T. (2010) Analysis of muscle activity during gait cycle using fuzzy-ruled based reasoning. Measurement, 43, 1106-1114. doi:10.1016/j.measurement.2010.04.010

[20]   Alaqtash, M., Yu, H., Brower, R., Abdelgawad, A. and Sarkodie-Gyan, T. (2011) Application of wearable sen- sors for human gait analysis using fuzzy computational algorithm. Engineering Application of Artfical Intelli- gence, 24, 1018-1025. doi:10.1016/j.engappai.2011.04.010

[21]   Sarkodie-Gyan, T., Yu, H., Alaqtash, M., Abdelgawad, A., Spier, E. and Brower, R. (2011) Measurement of functional impairments in human lo-comotion using pattern analysis. Measurement, 44, 181-191. doi:10.1016/j.measurement.2010.09.043

[22]   Yu, F., Chen, F. and Dong, K. (2005) A Granulation-based method for finding similarity between time series, granular computing. IEEE In-ternational Conference, 25-27 July 2005, 700-703.

[23]   Yu, F. and Pedrycz, W. (2009) The design of fuzzy information granules: Tradeoffs between specificity and experimental evidence. Applied Soft Computing, 9, 264- 273. doi:10.1016/j.asoc.2007.10.026

[24]   Peddrycz, W. and Gacek, A. (2002) Temporal granulations and its application to signal analysis. Information Science, 143, 47-71. doi:10.1016/S0020-0255(02)00179-2

[25]   Winter, D.A. (2009) Biomechanics and motor control of human movement. 4th Edition, John Wiley & Sons, Hoboken. doi:10.1002/9780470549148

[26]   Cram, J.R., Kasman, G.S. and Holtz, J. (1998) Introduction to surface electromyography. Aspen Publishers, Mary- land.

[27]   De Stefano, A., Burridge, J.H., Yule, V.T. and Allen, R. (2003) Effect of gait cycle selec-tion on EMG analysis during walking in adults and children with gait pathology. Gait & Posture, 20, 92-1001. doi:10.1016/S0966-6362(03)00099-7

[28]   Benedetti, M.G., Piperno, R., Simoncini, L., Bonato, P., Tonini, A. and Giannini, S. (1999) Gait abnormalities in minimal impaired multiple sclerosis patients. Multiple Sclerosis, 5, 363-368.

[29]   Lopez-Meyer, P., Fulk, G.D. and Sazonov, E.S. (2011) Automatic detection of temporal gait parameters in postroke individuals. IEEE Transactions on Information Technology in Biomedicine, 15, 594-601. doi:10.1109/TITB.2011.2112773

[30]   Tang, W., Tasch, W., Neerchal, N.K., Zahu, L. and Yarowsky, P. (2009) Measuring early pre-symptomatic changes in locomotion of SOD1-G93A rats—A rodent model of amyotrophic lateral sclerosis. Journal of Neuroscience Methods, 176, 254-262. doi:10.1016/j.jneumeth.2008.08.032

[31]   Tang, W., McDowell, K., Limsam, M., Neerchal, N.K., Yarowsky, P. and Tasch, U. (2010) Locomotion analysis of Sprague-Dawley rats before and after injection 6-OHDA. Behavioral Brain Research, 210, 131-133.

 
 
Top