Comparison of 4 Multi-User Passive Network Topologies for 3 Different Quantum Key Distribution

References

[1] N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, “Quan-
tum Cryptography,” Reveiw of Modern Physics, Vol.2, Septemner 2001, pp. 1-57.

[2]
W. K. Wootters and W. Zurek, “A Single Quantum Can-
not be Cloned,” Nature, Vol. 299, London, 1982. pp. 802-803.

[3]
P.Kumavor, A. Beal, S. Yelin, E. Donkor and B. Wang, “Comparison of Four Multi-user Quantum Key Distribu-
tion Schemes Over Passive Optical Networks,” Journal of Lightwave Technology, Vol 23, No.1 January 2005, p.268.

[4]
C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing,” IEEE Confonference on Computers, Systems Signal Processing, Bangalore, 1984.

[5]
C. Bennett, “Quantum Cryptography Using Any Two Non-orthogonal States,” Physical Review Letter, Vol. 68, 1992, p. 3121,

[6]
K. J. Gordon, V. Fernandez, P. D. Townsend and G. S. Buller, “A Short Wavelength Giga Hertz Clocked Fiber-Optic Quantum Key Distribution System,” IEEE Journal of Quantum Electronics, Vol 40, No7, July 2004, pp. 900-908.

[7]
A. Einstein, B. Podolsky and N. Rosen, “Can Quantum- Mechanical Description of Physical Reality be Considered Complete,” Physical Review, Vol. 41, May 1935, p. 777.

[8]
M. M. Ishtiaq Khan and M. Sher: “Protocols for Secure Quantum Transmission: a Review of Recent Develop-
ments,” Pakistan Journal of Information and Technology Vol. 2, No. 3, 2003, pp. 265-276.

[9]
J. Bell, “On the Einstein, Podolsky, Rosen Paradox,” Physics, Vol. 1, 1964, pp. 195-200.

[10]
D. Bru? and N. Lutkenhaus, “Quantum Key Distribution: From Principles to Practicalities,” Vol. 2, September 1999.

[11]
C. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin, “Experimental Quantum Cryptography”, Journal of Cryptography, Vol. 5, No. 1, 1992, pp. 3-28.

[12]
A. Muller, J. Breguet and N. Gisin, “Experimental Demonstration of Quantum Cryptography Using Polarized Photons in Optical Fiber Over More Than 1 km,” Europhysics Letter, Vol. 23, 1993, pp. 383-388.

[13]
D. Stucki et al., “Photon Counting for Quantum Key Distribution With Peltier Cooled InGaAs/InP APD’s,” Journal of Modern Optics, Vol. 48, No. 13, 2001, pp. 1967-1981.

[14]
P. D. Townsend, “Quantum Cryptography on Multi-user Optical Fiber Networks,” Journal of Nature, Vol. 385, No.2, 1997, pp. 47-49.

[15]
T. Nishioka, H. Ishizuka, T. Hasegawa, and J. Abe, “Circular Type Quantum Key Distribution,” IEEE Photon Technical Letter, Vol. 14, No. 4, April 2002, pp. 576-578.

[16]
C. A. Fuchs, N. Gisin, R. B. Griffiths, C. S. Niu and A. Peres, “Optimal Eavesdropping in Quantum Crypto-
graphy I,” Physical Review A, Vol. 56, 1997, pp. 1163.

[17]
C. A. Fuchs and A. Peres, “Quantum State Disturbance VS. Information Gain: Uncertainty Relations for Quantum Information,” Physical Review A, Vol. 53, 1996, pp. 2038-2045.

[18]
D. Bru?, “Optimal Eavesdropping in Quantum Crypto-
graphy With Six States,” Physical Reveiw Letter, Vol. 81, 1998, p. 3018.

[19]
D. Stucki, N. Gisin, O. Guinnard, G. Ribordi and H. Zbinden, “Quantum Key Distribution Over 67 km With a Plug&Play System,” New Journal of Physics, Vol. 4, July 2002, pp. 1-8.

[20]
P. A. Hiskett et al., “Eighty Kilometer Transmission Experiment Using an InGaAs/InP SPAD-based Quantum Cryptography Receiver Operating at 1.55 ?m,” Journal of Modern Optics, Vol. 48, No. 13, July 2001, pp. 1957-1966.

[21]
D. S. Bethune and W. P. Risk, “Autocompensating Quan-
tum Cryptography,” New Journal of Physics, Vol. 4, July 2002, pp. 1-15.

[22]
X. Fang and R. O. Claus, “Polarization-dependent All-
fiber Wavelength Division Multiplexer Based on a Signac Interferometer,” Optical Letter, Vol. 20, No. 20, October 1995, pp. 2146-2148,.

[23]
P. D. Townsend, J. G. Rarity and P. R. Tapster, “Enhanc-
ed Single Photon Fringe Visibility in a 10 km-long Prototype Quantum Cryptography Channel,” Electronics Letter, Vol. 29, July 1993, pp. 1291-1293.

[24]
C. Marand and P. D. Townsend, “Quantum Key Distri-
bution Over Distances as Long as 30 km,” Optical Letter, Vol. 20, No. 16, August 1995, pp. 1695-1697.

[25]
H. Zbinden, “Interferometry With Faraday Mirrors for Quantum Cryptography,” Electronics Letter, Vol. 33, 1997, pp. 586-588.

[26]
H. Kosaka, A. Tomita, Y. Nambu, N. Kimura and K. Nakamura, “Single Photon Interference Experiment Over 100 km for Quantum Cryptography System Using a Balanced Gated-mode Photon Detector,” Electronics Letter, Vol. 39, No. 16, 2003, pp. 1199-1201.

[27]
S. J. D. Phoenix et al., “Multi-user Quantum Crypto-
graphy on Optical Networks,” Journal of Modern Optics, Vol. 42, No. 6, January 1995, pp. 1155–1163.

[28]
A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and Play Systems for Quantum Cryptography,” Applied Physics Letter, Vol. 70, No. 7, February 1997, pp. 793–795.

[29]
E. Waks et al., “Secure Communication: Quantum Cryptography With a Photon Turnstile,” Nature, Vol. 420, London, December 2002, p. 762.

[30]
E. Moreau et al., “Single-mode Solid-state Single Photon Source Based on Isolated Quantum Dots in Pillar Microcavities,” Applied Physcis Letter, Vol. 79, No. 18, October 2001, pp. 2865-2867.

[31]
H. Bechmann-Pasquinucci, and N. Gisin, “Incoherent and Coherent Eavesdropping in the 6-state Protocol of Quantum Cryptography,” Physical Review A, Vol. 59, No. 6, 1998, pp. 1-11.

[32]
A. Ekert, “Quantum Cryptography Based on Bell's Theorem,” Physical Review Letter, Vol. 67, 1991, pp. 661-663.

[33]
R. J. Hughes, G. L. Morgan and C. G. Peterson, “Practical Quantum Key Distribution Over a 48-km Optical Fiber Network,” Physics Division Los Alamos National Liberatory. NM 87545.