A 2D Finite Element Study on the Flow Pattern and Temperature Distribution for an Isothermal Spherical Furnace with the Aperture

Show more

References

[1] D. Nutter and D. P. Dewitt, “Theory and Practice of Ra- diation Thermometry,” Wiley-Interscience, New York, 1989.

[2] S. Matle and S. Sundar, “Axi Symmetric 2D Simulation and Numerical Heat Transfer Characteristics for the Cali- bration Furnace in a Rectangular Enclosure,” Applied Mathematical Modeling, Vol. 36, No. 3, 2012, pp. 878- 893. doi:10.1016/j.apm.2011.07.047

[3] S. J. Cogan, K. Ryan and G. J. Sheard, “The Effects of Vortex Breakdown Bubbles in the Mixing Environment inside a Base Driven Bioreactor,” Applied Mathematical Modeling, Vol. 35, No. 4, 2011, pp. 1628-1637.

[4] A. Riahi and J. H. Curvan, “Full 3D Finite Element Cosserat Formulation with Application in Layered Struc- tures,” Applied Mathematical Modeling, Vol. 33, No. 8, 2009, pp. 3450-3464. doi:10.1016/j.apm.2008.11.022

[5] A. Prhashanna and R. P. Chhabra, “Free Convection in Power-Law Fluids from a Heated Sphere,” Chemical En- gineering Science, Vol. 65, No. 23, 2010, pp. 6190-6205.
doi:10.1016/j.ces.2010.09.003

[6] M. Z. Salleh, R. Nazar and I. Pop, “Modelling of Free Convection Boundary Layer Flow on a Solid Sphere with Newtonian Heating,” Acta Applicandae Mathematicae, Vol. 112, No. 3, 2010, pp. 263-274.
doi:10.1007/s10440-010-9567-5

[7] O. O. Oluwole, P. O. Atanda and B. I. Imasogie, “Finite Element Modeling of Heat Transfer in Salt Bath Fur- naces,” Journal of Minerals and Materials Characteriza- tion and Engineering, Vol. 8, No. 3, 2009, pp. 209-236.

[8] A. R. Khoei, I. Masters and D. T. Gethin, “Numerical Modeling of the Rotary Furnace in Aluminium Recycling Processes,” Journal of Materials Processing and Tech- nology, Vol. 139, No. 1-3, 2003, pp. 567-572.
doi:10.1016/S0924-0136(03)00538-7

[9] P. A. B. de Sampaio, P. R. M. Lyra, K. Morgan and N. P. Weatherill, “Petrov-Galerkin Solutions of the Incom- pressible Navier-Stokes Equations in Primitive Variables with Adaptive Remeshing,” Computer Methods in Ap- plied Mechanics and Engineering, Vol. 106, No. 1-2, 1993, pp. 143-178. doi:10.1016/0045-7825(93)90189-5

[10] W. N. R. Stevens, “Finite Element Stream Function-Vor- ticity Solution of Steady Laminar Natural Convection,” International Journal for Numerical Methods in Fluids, Vol. 2, No. 4, 1982, pp. 349-366.
doi:10.1002/fld.1650020404

[11] I. Goldhirsch, R. B. Pelz and S. A. Orszang, “Numerical Simulation of Thermal Convection in a Two Dimensional Finite Box,” Journal of Fluid Mechanics, Vol. 199, 1989, pp. 1-28. doi:10.1017/S0022112089000273

[12] D. E. Fitzjarrald, “An Experiment Study of Turbulent Convection in Air,” Journal of Fluid Mechanics, Vol. 73, No. 4, 1976, pp. 337-353.

[13] E. Bilgen and R. B. Yedder, “Natual Convection in En- closure with Heating and Cooling by Sinusoidal Tem- perature Profiles on One Side,” International Journal of Heat and Mass Transfer, Vol. 50, No. 1-2, 2007, pp. 139- 150. doi:10.1016/j.ijheatmasstransfer.2006.06.027

[14] I. E. Sarris, I. Lekakis and N. S. Vlachos, “Natural Convection in a 2D Enclosure with Sinusoidal Wall Temperature,” Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodo- logy, Vol. 42, No. 5, 2002, pp. 513-530.
doi:10.1080/10407780290059675

[15] T. Hartlep, A. Tilgner and F. H. Busse, “Large Scale Structures in Rayleigh-Benaurd Convection at High Ray- leigh Numbers,” Physical Review Letters, Vol. 91, No. 6, 2000. doi:10.1103/physRevLett.91.064501

[16] J. R. Lee, M. Y. Ha and S. Balachander, “Natural Con- vection in a Horizontal Fluid Layer with a Periodic Array of Internal Square Cylinders-Need for Very Large Aspect Ratio Domains,” International Journal of Heat and Fluid Flow, Vol. 28, No. 5, 2007, pp. 978-987.
doi:10.1016/j.ijheatfluidflow.2007.01.005

[17] R. Becker and B. Vexler, “A Posteriori Error Estimation for Finite Element Discretizations of Parameter Identifi- cation Problems,” Numerische Mathamatics, Vol. 96, No. 3, 2004, pp. 1-102.

[18] R. Becker and B. Vexler, “Mesh Refinement and Nu- merical Sensitivity Analysis for Parameter Calibration of Partial Differential Equations,” Journal of Computational Physics, Vol. 206, No. 1, 2005, pp. 95-110.
doi:10.1016/j.jcp.2004.12.018