AJAC  Vol.3 No.12 , December 2012
Potentiometric Determination of Trace Amounts of Mercury (II) in Water Sample Using a New Modified Palm Shell Activated Carbon Paste Electrode Based on Kryptofix 5
Abstract: A new modified palm shell activated carbon paste electrode based on 1,13-Bis(8-quinolyl)-1,4,7,10,13-pentaoxat-ride-cane ,8,8-(1,4,7,10,13-Pentaoxatridecylene)-diquinoline (Kryptofix?5) and plasticizing agent was prepared and studied as Hg2+ selective electrode. The best performance was observed with the electrode composition having the iono-phore-palm shell activated carbon-plasticizer composition 10%:50%:40% with Nernstian response over the concentration range of 1.0 × 10–8 - 1.0 × 10–2 M with a slope of 42 ± 1.5 mV per decade of concentration. The detection limit as determined from the calibration plot is 1.0 × 10–7 M. The proposed electrode shows good selectivity for Hg(II) with interfering ions. The response time of the electrode is fast (≤10 s), and can be used in the pH range of 3 - 11. The electrode was used to determine mercury in drinking water.
Cite this paper: A. Ismaiel, M. Aroua and R. Yusoff, "Potentiometric Determination of Trace Amounts of Mercury (II) in Water Sample Using a New Modified Palm Shell Activated Carbon Paste Electrode Based on Kryptofix 5," American Journal of Analytical Chemistry, Vol. 3 No. 12, 2012, pp. 859-865. doi: 10.4236/ajac.2012.312113.

[1]   C. Xiong and C. Yao, “Synthesis, Characterization and Application of Triethylenetetramine Modified Polystyrene Resin in Removal of Mercury, Cadmium and Lead from Aqueous Solutions,” Chemical Engineering Journal, Vol. 155, No. 3, 2009, pp. 844-850. doi:10.1016/j.cej.2009.09.009

[2]   M. W. Hinds, “Determination of Mercury in Gold Bullion by Flame and Graphite Furnace Atomic Absorption Spectrometry,” Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 53, No. 6-8, 1998, pp. 1063-1068. doi:10.1016/S0584-8547(98)00171-2

[3]   P. Bermejo-Barrera, E. M. Verdura-Constenla, A. Moreda-Pi?eiro, and A. Berme-jo-Barrera, “Rapid Acid Leaching and Slurry Sampling Procedures for the Determination of Methyl-Mercury and Total Mercury in Human Hair by Electrothermal Atomic Absorption Spectrometry,” Analytica Chimica Acta, Vol. 398, No. 2-3, 1999, pp. 263-272. doi:10.1016/S0003-2670(99)00453-5

[4]   K. H. Lee, S. J. Jiang, and H. W. Liu, “Determination of Mercury in Urine by Electrothermal Vaporization Isotope Dilution Inductively Coupled Plasma Mass Spectrometry,” Journal of Analytical Atomic Spectrometry, Vol. 13, No. 11, 1998, pp. 1227-1231. doi:10.1039/a804857f

[5]   L. Bennun and J. Gomez, “Determination of Mercury by Total-Reflection X-ray Fluorescence Using Amalgamation with Gold,” Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 52, No. 8, 1997, pp. 1195-1200. doi:10.1016/S0584-8547(97)00003-7

[6]   E. A. Viltchinskaia, L. L. Zeigman, D. M. Garcia, and P. F. Santos, “Simultaneous Determination of Mercury and Arsenic by Anodic Stripping Voltammetry,” Electroanalysis, Vol. 9, No. 8, 1997, pp. 633-640. doi:10.1002/elan.1140090811

[7]   J. Scaggs, D. D. Russell, M. W. Hill, and S. P. Duttagupta, “MEMS Sensor for Detecting Mercury at Ppb Levels,” University/Government/Industry Mi-croelectronics Symposium, 2001. Proceedings of the Fourteenth Biennial, 2001, p. 162.

[8]   S. S. M. Hassan, M. B. Saleh, A. A. Abdel Gaber, R. A. H. Mekheimer, and N. A. Abdel Kream, “Novel Mercury (II) Ion-Selective Polymeric Membrane Sensor Based on Ethyl-2-benzoyl-2-phenylcarbamoyl Acetate,” Talanta, Vol. 53, No. 2, 2000, pp. 285-293. doi:10.1016/S0039-9140(00)00445-8

[9]   B. Rezaei, S. Meghdadi, and S. Bagherpour, “Cadmium Selective PVC-Membranes Sensor Based on 1,2-Bis (Quino-line-2-carboxamido)-4-chlorobenzene as a Neutral Carrier,” Sensors Journal, IEEE, Vol. 8, No. 8, 2008, pp. 1469-1477. doi:10.1109/JSEN.2008.920719

[10]   M. N. Abbas and G. A. E. Mostafa, “New TrIIodomercurate-Modified Carbon Paste Electrode for the Potentiometric Determination of Mercury,” Analytica Chimica Acta, Vol. 478, No. 2, 2003, pp. 329-335. doi:10.1016/S0003-2670(02)01520-9

[11]   M. H. Mashhadiza-deh, et al., “A Novel Modified Carbon Paste Electrode for Po-tentiometric Determination of Mer-cury(II) Ion,” Electroanalysis, Vol. 18, No. 22, 2006, pp. 2174-2179. doi:10.1002/elan.200603643

[12]   J. Mehran, et al., “Potenti-ometric Detection of Mercury(II) Ions Using a Carbon Paste Electrode Modified with Substituted Thiourea-Functionalized Highly Ordered Nano-porous Silica,” Analytical Sciences, Vol. 25, No. 6, 2009, pp. 789-794. doi:10.2116/analsci.25.789

[13]   H. M. Abu-Shawish, “A Mercury(II) Selective Sensor Based on N,N’-Bis(salicylaldehyde)-phenylenediamine as Neutral Carrier for Potentiometric Analysis in Water Samples,” Journal of Hazardous Materials, Vol. 167, No. 6, 2009, pp. 602-608. doi:10.1016/j.jhazmat.2009.01.018

[14]   M. J. Gismera, J. R. Procopio, and M. T. Sevilla, “Characterization of Mer-cury—Humic Acids Interaction by Potentiometric Titration with a Modified Carbon Paste Mercury Sensor,” Electroanalysis, Vol. 19, No. 10, 2007, pp. 1055-1061. doi:10.1002/elan.200603821

[15]   G. Roa-Morales, M. T. Ramírez-Silva, R. L. González, L. Galicia, and M. Rome-ro-Romo, “Electrochemical Characterization and Determination of Mercury Using Carbon Paste Electrodes Modified with Cyclodextrins,” Electroanalysis, Vol. 17, No. 8, 2005, pp. 694-700. doi:10.1002/elan.200403099

[16]   H. Zejli, et al., “Electro-chemical Analysis of Mercury Using a Kryptofix Carbon-Paste Electrode,” Analytical Letters, Vol. 40, No. 14, 2007, pp. 2788-2798. doi:10.1080/00032710701577906

[17]   M. H. Mashhadizadeh and I. Sheikhshoaie, “Mercury(II) Ion-Selective Polymeric Membrane Sensor Based on a Recently Synthesized Schiff Base,” Talanta, Vol. 60, No. 1 , 2003, pp. 73-80. doi:10.1016/S0039-9140(03)00036-5

[18]   X. Yu, et al., “Mercury(II)-Selective Polymeric Membrane Electrode Based on the 3-[4-(Dimethylamino)phen- yl]-5-mecapto-1,5-diphenylpentanone,” Sensors and Actuators B: Chemical, Vol. 123, No. 1, 2007, pp. 352-358. doi:10.1016/j.snb.2006.08.041

[19]   V. K. Gupta, S. Chandra, and H. Lang, “A Highly Selective Mercury Electrode Based on a Diamine Donor Ligand,” Talanta, Vol. 66, No. 3, 2005, pp. 575-580. doi:10.1016/j.talanta.2004.11.028

[20]   G. Ye, Y. Chai, R. Yuan, and J. Dai, “A Mercury(II) Ion-Selective Electrode Based on N,N-Dimethyl-forma- mide-salicylacylhydrazone as a Neutral Carrier,” Analytical Sciences, Vol. 22, No. 4, 2006, pp. 579-582. doi:10.2116/analsci.22.579

[21]   X. Yang, D. Brynn Hibbert, and P. W. Alexander, “Flow Injection Potentiometry by Poly(Vinyl Chloride)-Mem- Brane Electrodes with Substituted Azacrown Ionophores for the Determination of Lead(II) and Mercury(II) Ions,” Analytica Chimica Acta, Vol. 372, No. 3, 1998, pp. 387- 398. doi:10.1016/S0003-2670(98)00382-1

[22]   V. K. Gupta, A. K. Singh, M. Al Khayat, and B. Gupta, “Neutral Carriers Based Polymeric Membrane Electrodes for Selective Determination of Mercury(II),” Analytica Chimica Acta, Vol. 590, No. 1, 2007, pp. 81-90. doi:10.1016/j.aca.2007.03.014

[23]   M. K. Rofouei, M. Mo-hammadi, and M. B. Gholivand, “Mercury(II) Selective Mem-brane Electrode Based on 1,3-Bis(2-Methoxybenzene)Triazene,” Materials Science and Engineering: C, Vol. 29, No. 7, 2009, pp. 2154-2159. doi:10.1016/j.msec.2009.04.017

[24]   F. Bakhtiarzadeh and S. Ab Ghani, “An Ion Selective Electrode for Mercury(II) Based on Mercury(II) Complex of Poly(4-Vinyl Pyridine),” Journal of Electroanalytical Chemistry, Vol. 624, No. 1-2, 2008, pp. 139-143. doi:10.1016/j.jelechem.2008.08.007

[25]   V. K. Gupta, S. Jain, and U. Khurana, “A PVC-Based Pentathia-15-Crown-5 Mem-brane Potentiometric Sensor for Mercury(II),” Electroanalysis, Vol. 9, No. 6, 1997, pp. 478-480. doi:10.1002/elan.1140090609

[26]   R. W. Cattrall and C.-P. Pui, “Coated Wire Ion Selective Electrodes for the Determination of Mercury(II),” Analytical Chemistry, Vol. 48, No. 3, 1976, pp. 552-556. doi:10.1021/ac60367a033

[27]   L. Perez-Marin, et al., “Mer-cury(II) Ion-Selective Electrode. Study of 1,3-Diphenylthiourea as Ionophore,” Analyst, Vol. 125, No. 10, 2000, pp. 1787-1790. doi:10.1039/b003502p

[28]   H. A. Arida, J. P. Kloock, and M. J. Sch?ning, “Novel Organic Membrane-Based Thin-Film Microsensors for the Determination of Heavy Metal Cations,” Sensors, Vol. 6, No. 4, 2006, pp. 435-444. doi:10.3390/s6040435

[29]   R. K. Mahajan, R. K. Puri, A. Marwaha, I. Kaur and M. P. Mahajan, “Highly Selective Poten-tiometric Determination of Mercury(II) Ions Using 1-Furan-2-Yl-4-(4-Nitroph- enyl)-2-phenyl-5H-imidazole-3-oxide Based Membrane Elec-trodes,” Journal of Hazardous Materials, Vol. 167, No. 1-3, 2009, pp. 237-243. doi:10.1016/j.jhazmat.2008.12.107

[30]   M. Mazloum, M. K. Amini and I. Mohammadpoor-Bal-tork, “Mercury Selective Membrane Electrodes Using 2-Mercaptobenzimidazole, 2-Mercaptobenzothiazole, and Hexathiacyclooctadecane Carriers,” Sensors and Actuators B: Chemical, Vol. 63, No. 1-2, 2000, pp. 80-85. doi:10.1016/S0925-4005(00)00300-2

[31]   M. K. Aroua, S. P. P. Leong, L. Y. Teo, C. Y. Yin and W. M. A. W. Daud, “Real-Time Determination of Kinetics of Adsorption of Lead(II) onto Palm Shell-Based Activated Carbon Using Ion Selective Electrode,” Bioresource Technology, Vol. 99, No. 13, 2008, pp. 5786-5792. doi:10.1016/j.biortech.2007.10.010

[32]   G. Issabayeva, M. K. Aroua and N. M. Sulaiman, “Electrodeposition of Copper and Lead on Palm Shell Activated Carbon in a Flow-Through Electrolytic Cell,” Desalination, Vol. 194, No. 1-3, 2006, pp. 192-201. doi:10.1016/j.desal.2005.09.029

[33]   Y. Umezawa, P. Buhl-mann, K. Umezawa, K. Tohda and S. Amemiya, “Potentiometric Selectivity Coefficients of Ion-Selective Electrodes, Part I, Inorganic Cations (IUPAC Technical Report),” Pure and Ap-plied Chemistry, Vol. 72, No. 10, 2000, pp. 1851-2082. doi:10.1351/pac200072101851

[34]   D. Jiménez, et al., “A New Chromo-Chemodosimeter Selective for Sulfide Anion,” Journal of the American Chemical Society, Vol. 125, No. 30, 2003, pp. 9000-9001. doi:10.1021/ja0347336

[35]   M. Vamvakaki and N. A. Chaniotakis, “Solid-Contact Ion-Selective Electrode with Stable Internal Electrode,” Analytica Chimica Acta, Vol. 320, No. 1, 1996, pp. 53-61. doi:10.1016/0003-2670(95)00524-2

[36]   J. Sánchez and M. d. Valle, “Determination of Anionic Surfactants Employing Po-tentiometric Sensors—A Review,” Critical Reviews in Analytical Chemistry, Vol. 35, No. 1, 2005, pp. 15-29. doi:10.1080/10408340590947899

[37]   V. K. Gupta, A. K. Singh, and B. Gupta, “Schiff Bases as Cadmium(II) Selective Ionophores in Polymeric Membrane Electrodes,” Analytica Chimica Acta, Vol. 583, No. 2, 2007, pp. 340-348. doi:10.1016/j.aca.2006.10.039

[38]   F. A. Cotton and G. Wil-kinson, “Quimica Inorganica Avanzada,” 4th Edition, Limusa, 1996.

[39]   E. Lindner, K. Toth, and E. Pungor, “Lead-Selective Neutral Carrier Based Liquid Membrane Electrode,” Analytical Chemistry, Vol. 56, No. 7, 1984, pp. 1127-1131. doi:10.1021/ac00271a016