JMP  Vol.3 No.12 , December 2012
Application of Generalized Non-Local Quantum Hydrodynamics to the Calculation of the Charge Inner Structures for Proton and Electron
Author(s) Boris V. Alexeev*
ABSTRACT
The proton and electron charge inner structures are considered in the frame of the non-local quantum hydrodynamics based on the non-local physical description. From calculations follow that proton and electron can be considered like charged balls (shortly CB model) which charges are concentrated mainly in the shell of these balls. The proton-electron collision in the frame of CB-model should be considered as collision of two resonators. In this case can be explained a number of character collisional features depending on the initial and final electron energies and the scattering angles.

Cite this paper
B. Alexeev, "Application of Generalized Non-Local Quantum Hydrodynamics to the Calculation of the Charge Inner Structures for Proton and Electron," Journal of Modern Physics, Vol. 3 No. 12, 2012, pp. 1895-1906. doi: 10.4236/jmp.2012.312239.
References
[1]   B. V. Alekseev, “Matematicheskaya Kinetika Reagiruyushchikh Gazov,” Mathematical Theory of Reacting Gases, Nauka, Moscow, 1982.

[2]   B. V. Alexeev, “The Generalized Boltzmann Equation, Generalized Hydrodynamic Equations and Their Applications,” Philosophical Transactions of the Royal Society, Vol. 349, 1994, pp. 417-443. doi:10.1098/rsta.1994.0140

[3]   B. V. Alexeev, “The Generalized Boltzmann Equation,” Physica A, Vol. 216, No. 4, 1995, pp. 459-468. doi:10.1016/0378-4371(95)00044-8

[4]   B. V. Alekseev, “Physical Basements of the Generalized Boltzmann Kinetic Theory of Gases,” Physics-Uspekhi, Vol. 43, No. 6, 2000, pp. 601-629. doi:10.1070/PU2000v043n06ABEH000694

[5]   B. V. Alekseev, “Physical Fundamentals of the Generalized Boltzmann Kinetic Theory of Ionized Gases,” Physics-Uspekhi, Vol. 46, No. 2, 2003, pp. 139-167. doi:10.1070/PU2003v046n02ABEH001221

[6]   B. V. Alexeev, “Generalized Boltzmann Physical Kinetics,” Elsevier, Amsterdam, 2004.

[7]   B. V. Alexeev, “Generalized Quantum Hydrodynamics and Principles of Non-Local Physics,” Journal of Nanoelectronics and Optoelectronics, Vol. 3, No. 3, 2008, pp. 143- 158. doi:10.1166/jno.2008.207

[8]   B. V. Alexeev, “Application of Generalized Quantum Hydrodynamics in the Theory of Quantum Soliton Evolution,” Journal of Nanoelectronics and Optoelectronics, Vol. 3, No. 3, 2008, pp. 316-328. doi:10.1166/jno.2008.311

[9]   L. Boltzmann, “Weitere Studien über das W?rmegleichgewicht unter Gasmolekulen,” Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Vol. 66, No. 2, 1872, p. 275.

[10]   L. Boltzmann “Vorlesungen über Gastheorie,” Verlag von Johann Barth, Leipzig, 1912.

[11]   S. Chapman and T. G. Cowling, “The Mathematical Theory of Non-uniform Gases,” Cambridge University Press, Cambridge, 1952.

[12]   I. O. Hirschfelder, Ch. F. Curtiss and R. B. Bird, “Molecular Theory of Gases and Liquids,” John Wiley and sons, Inc., New York, 1954.

[13]   J. S. Bell, “On the Einstein Podolsky Rosen Paradox,” Physics, Vol. 1, No. 3, 1964, pp. 195-200.

[14]   E. Madelung. “Quantum Theory in Hydrodynamical Form,” Zeitschrift fur Physik, Vol. 40, No. 3-4, 1927, pp. 322-325. doi:10.1007/BF01400372

[15]   L. D. Landau, “Zur Theorie der Energieübertragung. II,” Physics of the Soviet Union, Vol. 2, 1932, pp. 46-51.

[16]   C. Zener, “Non-Adiabatic Crossing of Energy Levels,” Proceedings of the Royal Society of London A, Vol. 137, No. 6, 1932, pp. 696-702.

[17]   M. Gell-Mann and F. Low, “Bound States in Quantum Field Theory,” Physical Review, Vol. 84, No. 2, 1951, p. 350. doi:10.1103/PhysRev.84.350

[18]   M. V. Berry, “Quantal Phase Factors Accompanying Adiabatic Changes,” Proceedings of the Royal Society of London A, Vol. 392, No. 1802, 1984, pp. 45-47. doi:10.1098/rspa.1984.0023

[19]   B. Simon, “Holonomy, the Quantum Adiabatic Theorem and Berry’s Phase,” Physical Review Letters, Vol. 51, No. 24, 1983, pp. 2167-2170. doi:10.1103/PhysRevLett.51.2167

[20]   B. V. Alexeev, A. I. Abakumov and V. S. Vinogradov, “Mathematical Modeling of Elastic Interactions of Fast Electrons with Atoms and Molecules,” Communications on the Applied Mathematics, Computer Centre of the USSR Academy of Sciences, Moscow, 1986.

[21]   B. V. Alexeev, “Non-Local Physics. Non-Relativistic Theory,” Lambert Academic Press, 2011.

[22]   B. V. Alexeev and I. V. Ovchinnikova, “Non-Local Physics. Relativistic Theory,” Lambert Academic Press, 2011.

[23]   P. A. M. Dirac, “Quantized Singularities in the Electromagnetic Field,” Proceedings of the Royal Society of London A, Vol. 133, No. 821, 1931, pp. 60-72. doi:10.1098/rspa.1931.0130

[24]   P. A. M. Dirac, “The Theory of Magnetic Monopoles,” Physical Reviews, Vol. 74, No. 7, 1948, pp. 817-830. doi:10.1103/PhysRev.74.817

[25]   M. Breidebach, J. I. Friedman, H. W. Kendall, E. D. Bloom, D. H. Coward, H. DeStaebler, J. Drees, L. W. Mo, and R. E. Taylor, “Observed Behavior of Highly Inelastic Electron-Proton Scattering,” Physical Review Letters, Vol. 23, No. 16, 1969, pp. 935-939. doi:10.1103/PhysRevLett.23.935

[26]   A. Yu. Popkov and I. K. Kuzmichev, “Open Resonator with Fragment of Circular Waveguide: Model Computation and Experiment,” Radio-Physics and Radio-As- tronomy, Vol. 14, No. 4, 2009, pp. 425-432.

[27]   M. Popescu, “Proton Internal Structure Revealed by Pion Scattering,” Romanian Reports in Physics, Vol. 57, No. 4, 2005, pp. 795-799.

[28]   D. I. Blokhintsev, “When the Weak Interaction Becomes the Strong One?” Physics-Uspekhi, Letter to Editor, LXII, Vol. 3, 1957, pp. 381-383.

 
 
Top