AM  Vol.3 No.12 , December 2012
Integral Inequalities of Hermite-Hadamard Type for r-Convex Functions
ABSTRACT
The main aim of this present note is to establish three new Hermite-Hadamard type integral inequalities for r-convex functions. The three new Hermite-Hadamard type integral inequalities for r-convex functions improve the result of original one by H?lder’s integral inequality, Stolarsky mean and convexity of function.

Cite this paper
L. Han and G. Liu, "Integral Inequalities of Hermite-Hadamard Type for r-Convex Functions," Applied Mathematics, Vol. 3 No. 12, 2012, pp. 1967-1971. doi: 10.4236/am.2012.312270.
References
[1]   C. E. M. Pearce, J. Peccaric and V. Simic, “Stolarsky Means and Hadamard’s Inequality,” Journal of Mathematical Analysis and Applications, Vol. 220, No. 1, 1998, pp. 99-109. doi:10.1006/jmaa.1997.5822

[2]   G.-S. Yang, “Refinements of Hadamard’s Inequality for r-Convex Functions,” Indian Journal of Pure and Applied Mathematics, Vol. 32, No. 10, 2001, pp. 1571-1579.

[3]   N. P. N. Ngoc, N. V. Vinh and P. T. T. Hien, “Integral Inequalities of Hadamard Type for r-Convex Functions,” International Mathematical Forum, Vol. 4, No. 35, 2009, pp. 1723-1728.

[4]   M. K. Bakula, M. E. Ozdemir and J. Pecaric, “Hadamard Type Inequalities for m-Convex and (α-m)-Convex Functions,” Journal of Inequalities in Pure and Applied Mathematics, Vol. 9, No. 4, 2008, Article ID: 96.

[5]   P. M. Gill, C. E. M. Pearce and J. Pe?ari?, “Hadamard’s Inequality for r-Convex Functions,” Journal of Mathematical Analysis and Applications, Vol. 215, No. 2, 1997, pp. 461-470. doi:10.1006/jmaa.1997.5645

[6]   A. G. Azpeitia, “Convex Functions and the Hadamard Inequality,” Revista Colombiana de Matemáticas, Vol. 28, No. 1, 1994, pp. 7-12.

[7]   K. B. Stolarsky, “Generalizations of the Logarithmic Mean,” Mathematics Magazine, Vol. 48, No. 2, 1975, pp. 87-92. doi:10.2307/2689825

 
 
Top