MSA  Vol.3 No.12 , December 2012
Physical and Morphological Structure of Chicken Feathers (Keratin Biofiber) in Natural, Chemically and Thermally Modified Forms
Abstract: Because of the constant challenge to preserve the environment and the search for new materials, a comparative study was carried out using keratin fiber, a fibrous protein, found in the chicken feathers. Five different samples of the feather were analyzed by Scanning Electron Microscopy (SEM) and X-ray diffractometer (XRD). First in their natural form Keratin Fiber (KF); the second treated with sodium hydroxide (KFNaOH); the third and fourth samples were semi carbonized at 220℃ in an oven without atmospheric control for 24 hours (samples obtained: Clear brown (SCFC) and Dark brown (SCFD)); and the fifth sample was carbonized by pyrolysis Carbonized Feathers (CF). The SEM result shows that the KF has a hollow structure, with knots and hooks. The KFNaOH structure presented rougher than that of the KF, but lost their hooks. The SCFC and SCFD presented brittle structures, but preserved the hollow structure of KF; however, it was only noticeable to a magnification of 3000 times. On the other hand, the CF, was shiny, black, and showed a higher amount of porosity with open micro-pores and micro-tubes, preserved the hollow structure of KF than any other samples studied, and also presented well-defined closed micro-tubes. From the XRD analysis of the KF, CF, KFNaOH, SCFC and SCFD, presented semi-crystalline structures, with the following indices of crystallinity, 20.09%, 18.93%, 17.97%, 15.02% and 14.31%, respectively. The CF presented smaller size crystallites, in between the micro- particulates, around 27 nm and the KFNaOH with larger size around 74 nm. From this study it was concluded that micro-porous carbon material from chicken feathers (KF) could be efficiently obtained through pyrolysis.
Cite this paper: D. Belarmino, R. Ladchumananandasivam, L. Belarmino, J. Pimentel, B. da Rocha, A. Galvão and S. de Andrade, "Physical and Morphological Structure of Chicken Feathers (Keratin Biofiber) in Natural, Chemically and Thermally Modified Forms," Materials Sciences and Applications, Vol. 3 No. 12, 2012, pp. 887-893. doi: 10.4236/msa.2012.312129.

[1]   N. Reddy and Y. Yang, “Structure and Properties of Chicken Feather Barbs as Natural Protein Fibers,” Journal of Polymers and the Environment, Vol. 1, No 1, 2007, pp. 81-87. doi:10.1007/s10924-007-0054-7

[2]   G. R. P. Moore, S. M. Martelli, C. A. Gandolfo, A. T. N. Pires and J. B. Laurindo, “Queratina de Penas de Frango: Extra??o, Caracteriza??o e Obten??o de Filmes,” Ciência e Tecnologia de Alimentos, Vol. 26, No. 2, 2006, pp. 421 427. doi:10.1590/S0101-20612006000200027

[3]   M. K. Campbell, “Bioquímica,” 3th Edition, Artes Medicas Sul-Sul/Biomed, 2006.

[4]   A. L. M. Hernandez and C. V. Santos, “Keratin Fibers from Chicken-Feathers: Structure and Advances in Polymer Composites,” In: R. Dullaart, et al., Eds., Keratin Structure, Properties and Applications, Nova Science Publishers, 2012, pp. 149-211.

[5]   M. A. Meyers, P. Chen, A. Y. Lin and Y. Seki, “Biologi cal Materials: Structure and Mechanical Properties,” El sevier, Vol. 53, No. 1, 2008, pp. 1-206. doi:10.1016/j.pmatsci.2007.05.002

[6]   H. B. Goyal, D. Seal and R. C. Saxena, “Bio-Fuels from Thermochemical Conversion of Renewable Resources: A Review,” Renewable and Sustainable Energy Reviews, Vol. 12, No 2, 2008, pp. 504-517. doi:10.1016/j.rser.2006.07.014

[7]   O. Sandru, “Carbonized Chicken Feathers Better Than Carbon Nanotubes at Storing Hydrogen,” The Green Optimistic, 2009.

[8]   A. V. Maciel, “Estudo dos Processos de Redu??o Car botérmica de Compostos de Zn, Cd e Sn Assistidos pela Co-pirólise de Diferentes Biomassas para a Obten??o de Materiais Nanoestruturados,” Ph.D. Thesis, Federal Uni versity of Minas Gerais, Belo Horizonte, 2010.

[9]   E. Hammel, et al., “Carbon Nanofibers for Composite Applications,” Carbon, Vol. 42, No. 5-6, 2004, pp. 1153 1158. doi:10.1016/j.carbon.2003.12.043

[10]   P. Morgan, “Carbon Fibers and Their Composites,” Tay lor & Francis, CRC Press, Boca Raton, 2005. doi:10.1201/9781420028744

[11]   G. G. Tibbetts, M. L. Lakea, K. L. Strongb and B. P. Rice, “A Review of the Fabrication and Properties of Vapor Grown Carbon Nanofiber/Polymer Composites,” Compo sites Science and Technology, Vol. 67 No. 7-8, 2007, pp. 1709-1718. doi:10.1016/j.compscitech.2006.06.015

[12]   R. Piccoli, A. Mexias, R. Figueira, O. Montedo and F. Bertan, “Características das Principais Técnicas Ana líticas Aplicadas à Caracteriza??o de Materiais,” Bra zilian Congress of Engineering and Materials Science, 17, Characterisation of Materials, Metallum, Foz do Igua?u, Vol. 102, 2006, p. 28.

[13]   Belarmino, et al., “Estudo da Estabilidade Térmica de Fibra de Quertina—Keratin Fibre (KF) de Penas de Fran gopara Obten??o de Carbono—CarbonisedFeatehrs (CF),” Holos Revista, Vol. 3, No. 3, 2012.

[14]   D. C. F. Moreira, F. A. Sigoli and I. O. Mazali, “Avalia ??o da Influência da Cristalinidadesobre a Determina??o do Tamanho de Cristalito do óxidosemi-condutor SnO2,” XIX Congress of Chemistry Institute, State University of Campinas, Campinas.

[15]   M. Munaro, “Stroke Development of Polyethylene Blends with Improved Performance for Use in Power Sector,” Ph.D. Thesis, Federal University of Paraná, Curitiba, 2007.

[16]   I. F. Gimenez, O. P. Ferreira and O. L. Alves, “Desenvol vimento de Ecomateriais: Materiais Porosos Para Aplica??o Em Green Chemistry (Química Verde),” State University of Campinas, Campinas.

[17]   A. M. F. M. Ventura, “Os Compósitos e a Sua Aplica??o Na Reabilita??o de Estruturas Metálicas,” Ciência & Tecnologia dos Materiais, Vol. 21, No. 3-4, 2009, pp. 10-19.

[18]   R. K. Guptaamd, E. Kennel and K. Kim, “Polymer Nano composites Handbook,” Taylor & Francis, CRC Press, Boca Raton, 2009.