ALAMT  Vol.2 No.4 , December 2012
BLU Factorization for Block Tridiagonal Matrices and Its Error Analysis
Author(s) Chi-Ye Wu
ABSTRACT
A block representation of the BLU factorization for block tridiagonal matrices is presented. Some properties on the factors obtained in the course of the factorization are studied. Simpler expressions for errors incurred at the process of the factorization for block tridiagonal matrices are considered.

Cite this paper
C. Wu, "BLU Factorization for Block Tridiagonal Matrices and Its Error Analysis," Advances in Linear Algebra & Matrix Theory, Vol. 2 No. 4, 2012, pp. 39-42. doi: 10.4236/alamt.2012.24006.
References
[1]   L. Z. Lu and W. Sun, “The Minimal Eigenvalues of a Class of Block-Tridiagonal Matrices,” IEEE Transactions on Information Theory, Vol. 43, No. 2, 1997, pp. 787-791. doi:10.1109/18.556141

[2]   C. F. Fischer and R. A. Usmani, “Properties of Some Tridiagonal Matrices and Their Application to Boundary Value Problems,” SIAM Journal on Numerical Analysis, Vol. 6, No. 1, 1969, pp. 127-142. doi:10.1137/0706014

[3]   G. D. Simth, “Numerical Solution of Partial Differential Equations: Finite Difference Methods,” 2nd Edition, Oxford University Press, New York, 1978.

[4]   R. M. M. Mattheij and M. D. Smooke, “Estimates for the Inverse of Tridiagonal Matrices Arising in Boundary-Value Problems,” Linear Algebra and Its Applications, Vol. 73, 1986, pp. 33-57. doi:10.1016/0024-3795(86)90232-6

[5]   P, Amodio and F. Mazzia, “A New Approach to the Backward Error Analysis in the LU Factorization Algorithm,” BIT Numerical Mathematics, Vol. 39, No. 3, 1999, pp. 385-402. doi:10.1023/A:1022358300517

[6]   E. Isaacson and H. B. Keller, “Analysis of Numerical Methods,” Wiley, New York, 1966.

[7]   R. E. Bank and D. J. Rose, “Marching Algorithms for Elliptic Boundary Value Problems. I: The Constant Coefficient Case,” SIAM Journal on Numerical Analysis, Vol. 14, No. 5, 1977, pp. 792-829. doi:10.1137/0714055

[8]   R. M. M. Mattheij, “The Stability of LU-Decompostions of Block Tridiagonal Matrices,” Bulletin of the Australian Mathematical Society, Vol. 29, No. 2, 1984, pp. 177-205. doi:10.1017/S0004972700021432

[9]   P. Concus, G. H. Golub and G. Meurant, “Block Preconditioning for the Conjugate Method,” SIAM Journal on Scientific and Statistical Computing, Vol. 6, No. 1, 1985, pp. 220-252. doi:10.1137/0906018

[10]   J. M. Varah, “On the Solution of Block-Tridiagonal Systems Arising from Certain Finite-Difference Equations,” Mathematics of Computation, Vol. 26, No. 120, 1972, pp. 859-868. doi:10.1090/S0025-5718-1972-0323087-4

[11]   R. E. Bank and D. J. Rose, “Marching Algorithms for Elliptic Boundary Value Problems. I: The Constant Coefficient Case,” SIAM Journal on Numerical Analysis, Vol. 14, No. 5, 1977, pp. 792-829. doi:10.1137/0714055

[12]   P. Yalamov and V. Pavlov, “Stability of the Block Cyclic Reduction,” Linear Algebra and Its Applications, Vol. 249, No. 1-3, 1996, pp. 341-358. doi:10.1016/0024-3795(95)00392-4

[13]   J. W. Demmel and N. J. Higham, “Stability of Block Algorithms with Fast Level-3 BLAS,” ACM Transactions on Mathematical Software, Vol. 18, No. 3, 1992, pp. 274-291. doi:10.1145/131766.131769

[14]   J. W. Demmel, N. J. Higham and R. S. Schreiber, “Stability of Block LU Factorizaton, Numerical Linear Algebra with Applications,” Vol. 2, No. 2, 1995, pp. 173-190. doi:10.1002/nla.1680020208

[15]   N. J. Higham, “Accuracy and Stability of Numerical Algorithm,” Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1996.

 
 
Top