Numerical Solution of Functional Integral and Integro-Differential Equations by Using B-Splines

Show more

References

[1] H. Arndt, “Numerical Solution of Retarded Initial Value Problems: Local and Global Error and Step-Size Control,” Numerische Mathematik, Vol. 43, No. 3, 1984, pp. 343-360. doi:10.1007/BF01390178

[2] S. E. El-Gendi, “Chebyshev Solution of a Class of Functional Equations,” Computer Society of India, Vol. 8, 1971, pp. 271-307.

[3] M. Zennaro, “Natural Continuous Extension of RungeKutta Methods,” Mathematics of Computation, Vol. 46, No. 173, 1986, pp. 119-133.
doi:10.1090/S0025-5718-1986-0815835-1

[4] L. Fox, D. F. Mayers, J. R. Ockendon and A. B. Taylor, “Ona Functional Differential Equation,” Journal of the Institute of Mathematics and Its Applications, Vol. 8, No. 3, 1971, pp. 271-307. doi:10.1093/imamat/8.3.271

[5] M. T. Rashed, “Numerical Solution of Functional Differential, Integral and Integro-Differential Equations,” Applied Mathematics and Computation, Vol. 156, No. 2, 2004, pp. 485-492. doi:10.1016/j.amc.2003.08.021

[6] K. Maleknejad and S. Rahbar, “Numerical Solution of Fredholm Integral Equations of the Second Kind by Using B-Spline Functions,” International Journal of Engineering Science, Vol. 11, No. 5, 2000, pp. 9-17.

[7] J. Stoer and R. Bulirsch, “Introduction to the Numerical Analysis,” Springer-Verlag, New York, 2002.

[8] L. L. Schumaker, “Spline Functions: Basic Theory,” John Wiley, New York, 1981.

[9] C. T. H. Baker, “The Numerical Solution of Integral Equations,” Clarendon Press, Oxford, 1969.

[10] K. Maleknejad and H. Derili, “Numerical Solution of Integral Equations by Using Combination of Spline-Collocation Method and Lagrange Interpolation,” Applied Mathematics and Computation, Vol. 175, No. 2, 2006, pp. 1235-1244.

[11] L. M. Delves and J. L. Mohammed, “Computational Methods For Integral Equations,” Cambridge University Press, Cambridge, 1985.
doi:10.1017/CBO9780511569609

[12] M. T. Rashed, “An Expansion Method To Treat Integral Equations,” Applied Mathematics and Computation, Vol. 135, No. 2-3, 2003, pp. 73-79.
doi:10.1016/S0096-3003(02)00347-8