Approximate analytical solution of non-linear reaction diffusion equation in fluidized bed biofilm reactor

Show more

References

[1] Zobell, C.E. and Anderson, D.Q. (1936) Observationson the multiplication of bacteria in different volumes of stored sea water and the influence of oxygen tension and solid surfaces. Biological Bulletin, 71, 324-342.
doi:10.2307/1537438

[2] Williamson, K. and McCarty, P.L. (1976) A model of substrate utilization by bacterial films. Journal of the Water Pollution Control Federation, 48, 9-24.

[3] Harremo?s, P. (1976) The significance of pore diffusion to filter denitrification. Journal of the Water Pollution Control Federation, 48, 377-388.

[4] Rittmann, B.E and McCarty, P.L. (1980) Model of steady- state-biofilm kinetics. Biotechnology and Bioengineering, 22, 2343-2357. doi:10.1002/bit.260221110

[5] Rittmann, B.E and McCarty, P.L. (1981) Substrate flux into biofilms of any thickness. Journal of Environmental Engineering, 107, 831-849.

[6] Rittman, B.E and McCarty, P.L. (1978) Variable-order model of bacterial-film kinetics. American Society of Civil Engineers. Environmental Engineering Division, 104, 889-900.

[7] Choi, J.W., Min, J., Lee, W.H and Lee, S.B. (1999) Mathematical model of a three-phase fluidized bed biofilm reactor in wastewater treatment. Biotechnology and Bioprocess Engineering, 4, 51-58. doi:10.1007/BF02931914

[8] Meikap, B.C and Roy, G.K. (1995) Recent advances in biochemical reactors for treatment of wastewater. International Journal of Environmental Protection, 15, 44-49.

[9] Vinod, A.V. and Reddy, G.V. (2003) Dynamic behaviour of a fluidised bed bioreactor treating waste water. Indian Chemical Engineer Section A, 45, 20-27.

[10] Sokol, W. (2003) Treatment of refinery wastewater in a three-phase fluidized bed bioreactor with a low-density biomass support. Biochemical Engineering Journal, 15, 1-10. doi:10.1016/S1369-703X(02)00174-2

[11] Gonzalez, G., Herrera, M.G., Garcia, M.T and Pena, M.M. (2001) Biodegradation of phenol in a continuous process: Comparative study of stirred tank and fluidized-bed bioreactors. Bioresource Technology, 76, 245-251.
doi:10.1016/S0960-8524(00)00092-4

[12] Sokol, W. and Korpal, W. (2004) Determination of the optimal operational parameters for a three-phase fluidised bed bioreactor with a light biomass support when used intreatment of phenolic wastewaters. Biochemical Engineering Journal, 20, 49-56. doi:10.1016/j.bej.2004.02.009

[13] Tanyolac, A. and Beyenal, H. (1996) Predicting average biofilm density of a fully active spherical bioparticle. Journal of Biotechnology, 52, 39-49.
doi:10.1016/S0168-1656(96)01624-0

[14] Beyenal, H. and Tanyolac, A. (1998) The effects of biofilm characteristics on the external mass transfercoefficient in a fluidized bed biofilm reactor. Biochemical Engineering Journal, 1, 53-61.
doi:10.1016/S1369-703X(97)00010-7

[15] Adomian, G. (1976) Nonlinear stochastic differential equations. Journal of Mathematical Analysis and Applications, 55, 441-452. doi:10.1016/0022-247X(76)90174-8

[16] Adomian, G. and Adomian, G.E. (1984) A global method for solution of complex systems. Mathematical Model, 5, 521-568. doi:10.1016/0270-0255(84)90004-6

[17] Adomian, G. (1994) Solving frontier problems of physics: The decomposition method. Kluwer Academic Publishers, Boston, 1994.

[18] Hasan, Y.Q and Zhu, L.M. (2008) Modified adomian decomposition method for singular initial value problems in the second-order ordinary differential equations. Surveys in Mathematics and Its Applications, 3, 183-193.

[19] Hosseini, M.M. (2006) Adomian decomposition method with Chebyshev polynomials. Applied Mathematics and Computation, 175, 1685-1693.
doi:10.1016/j.amc.2005.09.014

[20] Wazwaz, A.M. (1999) A reliable modifications of Adomian decomposition method. Applied Mathematics and Computation, 102, 77-86.
doi:10.1016/S0096-3003(98)10024-3

[21] Wazwaz, A.M. (1999) Analytical approximations and Pade approximants for Volterra’s population model. Applied Mathematics and Computation, 100, 13-25.
doi:10.1016/S0096-3003(98)00018-6

[22] Wazwaz, A.M. (2002) A new method for solving singular initial value problems in the second-order ordinary differential equations. Applied Mathematics and Computation, 128, 45-57. doi:10.1016/S0096-3003(01)00021-2